
February 1999

NASA/CR-1999-208992

Formal Verification of the AAMP-FV
Microcode

Steven P. Miller, David A. Greve, Matthew M. Wilding
Rockwell Collins, Cedar Rapids, IA

Mandayam Srivas
SRI International, Menlo Park, CA

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASAÕs scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASAÕs institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

· TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

· TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

· CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

· CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

· SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

· TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASAÕs
mission.

Specialized services that complement the STI
Program OfficeÕs diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

· Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

· E-mail your question via the Internet to

help@sti.nasa.gov

· Fax your question to the NASA STI Help

Desk at (301) 621-0134

· Phone the NASA STI Help Desk at

(301) 621-0390

· Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contracts NAS1-19704 and NAS1-20334

February 1999

NASA/CR-1999-208992

Formal Verification of the AAMP-FV
Microcode

Steven P. Miller, David A. Greve, Matthew M. Wilding
Rockwell Collins, Cedar Rapids, IA

Mandayam Srivas
SRI International, Menlo Park, CA

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

Contents

1 Introduction 1

2 Background 3

2.1 NASA Langley, SRI International, and Collins . 3

2.2 The AAMP Family of Microprocessors . 3

2.3 PVS . 4

2.4 Related Work . 5

2.5 Formal Veri�cation of the AAMP5 . 5

2.6 Overview of Processor Correctness . 6

3 Project Goals and History 8

3.1 Project Goals . 8

3.2 Project History . 9

4 The Macroarchitecture: The Programmer's View of the AAMP-FV 13

4.1 Overview of the AAMP-FV Macroarchitecture . 13

4.1.1 Organization of Memory . 13

4.1.2 Process Stack . 13

4.1.3 Stack Cache . 15

4.1.4 Internal Registers . 15

4.1.5 Instruction Set and Data Types . 16

4.1.6 Multi-Tasking and Error Handling . 16

4.2 Formal Speci�cation of the Macroarchitecture . 18

4.2.1 Bit Vectors . 19

4.2.2 Memory . 20

4.2.3 Macroarchitecture State . 20

4.2.4 Next Macro State Function . 22

5 The Microarchitecture: The Register Transfer View of the AAMP-FV 25

5.1 Overview of the AAMP-FV Microarchitecture . 25

5.1.1 The Data Path . 25

5.1.2 The Microcontroller . 27

5.1.3 The Bus Interface Unit . 28

5.2 Formal Speci�cation of the Microarchitecture . 28

5.3 Formal Speci�cation of the Microcode . 31

iii

6 Formal Veri�cation of the AAMP-FV 33

6.1 Overview . 33
6.1.1 Commutativity Theorems . 33
6.1.2 Visibility Theorems . 34
6.1.3 Invariant Theorems . 34

6.2 The Micro Correctness Proofs . 34
6.2.1 Standard AAMP-FV Instructions . 35

6.2.1.1 The Micro Correctness Theory . 35
6.2.1.2 The Micro Correctness Proofs . 38
6.2.1.3 Proofs of Visibility Properties . 39
6.2.1.4 Proofs of Invariant Properties . 39

6.2.2 The Complex AAMP-FV Instructions . 39
6.2.2.1 The CALL Instruction . 40

6.3 Proof of the Stack Adjustment Logic . 43
6.4 The Macro Lift Proofs . 43

6.4.1 The Abstraction Function . 43
6.4.2 The Macro Correctness Statement . 43
6.4.3 The Macro Lift Proofs . 45

7 Lessons Learned 47

7.1 Technology Transfer . 47
7.2 Development of Domain Speci�c Libraries . 48
7.3 Proof Robustness . 49
7.4 Exploiting Modularity . 50
7.5 Support for Product Families . 51
7.6 Importance of the User Interface . 52
7.7 What Needs to be Proven? . 53
7.8 Support for Team E�orts . 54
7.9 Use of Human Resources . 55

8 Conclusions and Future Directions 57

iv

List of Figures

2.1 Pictoral Representation of Microcode Correctness . 6

4.1 The Process Stack . 14
4.2 Macroarchitecture Speci�cation Hierarchy . 18
4.3 PVS Speci�cation of AAMP-FV Bit Vectors . 19
4.4 PVS Speci�cation of AAMP-FV Memory . 21
4.5 PVS Speci�cation of AAMP-FV Macroarchitecture State 22
4.6 PVS Speci�cation of REFA instruction . 23

5.1 The AAMP-FV Microarchitecture . 26
5.2 PVS Speci�cation of CONNECT . 30
5.3 PVS Speci�cation of the Next PC Register . 30
5.4 PVS Speci�cation of the REFA Microcode . 32

6.1 Overview of the Correctness Proof . 33
6.2 CALL Proof Structure . 41
6.3 Step Function . 42
6.4 Abstraction Function . 44
6.5 PVS Correctness Statement for the REFA Instruction 45

v

List of Tables

2.1 Applications of the CAPS/AAMP Family . 4

3.1 Level of E�ort . 10
3.2 Proofs Completed . 11

vi

Chapter 1

Introduction

Software and digital hardware are increasingly being used in safety-critical systems such as air-
craft, nuclear power plants, weapon systems, and medical instrumentation. Several authors have
demonstrated the infeasibility of showing that such systems meet ultra-high reliability requirements
through testing alone [8, 26]. Formal speci�cation combined with mechanical proofs of correctness
are a promising approach for achieving the extremely high levels of assurance required of safety-
critical systems, but there have been few examples of the use of such approaches in industry.

Previous papers have described the formal veri�cation of the microcode in a Rockwell propri-
etary microprocessor, the AAMP5 [27, 37, 35, 38, 36]. Sponsored by the Assessment Technology
Branch of NASA Langley and Collins Commercial Avionics, a division of Rockwell International,
this project was conducted by Collins and SRI's Computer Science Laboratory. The project con-
sisted of specifying in the PVS language developed by SRI [28, 29] a portion of a Rockwell pro-
prietary microprocessor, the AAMP5, at both the instruction set and register-transfer levels and
using the PVS theorem prover to show the microcode correctly implements the speci�ed behavior
for a representative subset of instructions.

The central result of the AAMP5 project was to demonstrate that formal veri�cation of the
microcode for a large, pipelined microprocessor was technically feasible. Over half the AAMP5
instruction set was formally speci�ed at the macroarchitecture level, and all of the microarchitecture
needed for formal veri�cation of the microcode was speci�ed. The microcode for eleven instructions,
representative of several instruction classes, was proven correct in the absence of interrupts. Another
key result was the discovery of both actual and seeded errors.

However, the AAMP5 project was very much an exploratory project, and the cost to verify
each instruction was quite high. While it was clear that costs could be reduced signi�cantly on the
next project, there was no way to accurately estimate how large this savings would be. Thus the
AAMP5 project left unanswered the question of whether formal veri�cation of microcode could be
performed in a cost e�ective manner. To address this question, NASA, SRI, and Collins decided to
repeat the experiment with a new processor, the AAMP-FV, to see if the expertise gained during
the AAMP5 project could be used to bring the cost of down to an acceptable level.

Rather than choose a microprocessor currently under development, as was done with the
AAMP5, the decision was made to apply formal veri�cation to a processor speci�cally designed
for use in ultra-critical applications. The AAMP-FV is a paper and pencil design of a processor
speci�cally designed for use in applications such as autoland or y-by-wire. As a result, it is simpler
than other members of the AAMP family, though it is by no means a toy. Like all members of the

1

AAMP family, it is a stack-based machine designed for use with block-structured, high-level lan-
guages such as Ada in real-time embedded applications, and provides hardware support for many
features normally provided by the compiler and the run-time environment.

The key result of the AAMP-FV project is to con�rm that the expertise gained on the AAMP5
project can be exploited to reduce the cost of formal veri�cation dramatically. Of the 80 AAMP-FV
instructions, 54 were proven correct. More importantly, the cost of their veri�cation dropped by
almost an order of magnitude from that observed on the AAMP5 project. In many ways, veri�cation
of these 54 instructions typi�ed a true engineering process, using well understood methods to achieve
clearly de�ned goals in the expected amount of time.

However, this was not the case for the entire project. As more complex instructions were
attempted, proof techniques �rst developed on the AAMP5 project broke down and new approaches
had to be devised. This phase progressed more as an exploratory project, with a steep learning curve
and unexpected delays. While fewer instructions were veri�ed during this phase, several important
new techniques were developed. One of the main contributions of the AAMP-FV project was the
development of methods to handle instructions with complex microcode.

Organization of the Report
This report is organized as follows. Chapter 2 provides general background, describing the

participants in the project, the history of the AAMP family of microprocessors, the PVS speci-
�cation language, and a brief survey of related work. Chapter 3 discusses the goals and history
of the project. Chapter 4 describes the AAMP-FV instruction set (macro) architecture and its
speci�cation in PVS. Chapter 5 provides a similar discussion of the AAMP-FV register transfer
(micro) architecture. Chapter 6 describes the formal veri�cation e�ort. Chapter 7 discusses lessons
learned on both the AAMP5 and AAMP-FV projects, and chapter 8 summarizes our conclusions
and suggestions for future work.

2

Chapter 2

Background

The following sections discuss the AAMP family of microprocessors, the PVS veri�cation system,
related work, and provide a brief overview of the technical approach.

2.1 NASA Langley, SRI International, and Collins

NASA Langley's research program in formal methods [9] was established to bring formal methods
technology to a su�ciently mature level for use by the United States aerospace industry. Besides
the inhouse development of a formally veri�ed reliable computing platform RCP [14], NASA has
sponsored a variety of demonstration projects to apply formal methods to critical subsystems of
real aerospace computer systems.

The Computer Science Laboratory of SRI International has been involved in the development
and application of formal methods for more than twenty years. The formal veri�cation systems
EHDM and PVS were both developed at SRI. Both EHDM and PVS have been used to perform
several veri�cations of signi�cant di�culty, most notably in the �eld of fault-tolerant architectures
and hardware designs. Recently, SRI has been actively involved in investigating ways to transfer
formal veri�cation technology to industry.

Collins Avionics & Communications is a division of Rockwell International and one of the largest
suppliers of communications and avionics systems for commercial transport and general aviation
aircraft. Collins' interest in formal methods dates from 1991 when it participated in the MCC
Formal Methods Transition Study [17]. As a result of this study, Collins initiated several small
pilot projects to explore the use of formal methods, including formal veri�cation of the AAMP5
[27, 37, 35, 38, 36].

2.2 The AAMP Family of Microprocessors

The Advanced Architecture Microprocessor (AAMP) is a Rockwell proprietary family of micropro-
cessors based on the Collins Adaptive Processing System (CAPS) originally developed in 1972 [3].
The AAMP architecture is speci�cally designed for use with block-structured, high-level languages
such as Ada in real-time embedded applications. It is based on a stack architecture and provides
hardware support for many features normally provided by the compiler and run-time environment,
such as procedure state saving, parameter passage, return linkage, and reentrancy. The AAMP

3

also simpli�es real-time executive design by implementing in hardware such functions as interrupt
handling, task state saving, and context switching. Use of internal registers holding the top few
elements of the stack provides the AAMP family with performance that rivals or exceeds that of
most commercially available 16-bit microprocessors.

The original CAPS architecture, a multiboard minicomputer, was developed in 1972 and was
quickly followed by the CAPS-2 through CAPS-10. In 1981, the original AAMP consolidated all
CAPS functions except memory on a single integrated circuit. It was followed by the AAMP2,
AAMP3, and AAMP5. Members of the CAPS/AAMP family have been used in an impressive
variety of products as shown in Table 2.1.

Table 2.1: Applications of the CAPS/AAMP Family

CAPS-4 1974 Global Positioning System, General Development Model (GPS GDM)

CAPS-6 1977 Boeing 757, 767 Autopilot Flight Director System (AFDS)
Lockheed L-1011 Active Control System (ACS)
Lockheed L-1011 Digital Flight Control System (DFCS)
NASA Fault Tolerant Multiprocessor (FTMP)

CAPS-8 1979 Boeing 757, 767 Electronic Flight Instrumentation System (EFIS)
Boeing 757, 767 Engine Instrumentation/Crew Alerting System (EICAS)

CAPS-7 1979 Navstar Global Positioning System (GPS)
Boeing 747-400 Integrated Display System (IDS)

CAPS-10 1979 Boeing 747-400 Central Maintenance Computer (CMC)
Boeing 737-300 Electronic Flight Instrumentation System (EFIS)

AAMP1 1981 Boeing 737-300 Engine Instrumentation/Crew Alerting System (EICAS)
Air Transport Tra�c Collision Avoidance System (TCAS)

AAMP2 1987 Air Transport TCAS Vertical Speed Indicator (TVI)
Boeing 777 Flight Control Backdrive
Commercial GPS: Navcore I, Navcore II, Navcore V

AAMP3 1992 Boeing 777 Standby Instruments

AAMP5 1993 Global Positioning Systems, Upgrade for AAMP2

2.3 PVS

PVS (Prototype Veri�cation System) [31] is an environment for speci�cation and veri�cation that
has been developed at SRI International's Computer Science Laboratory. In comparison to other
widely used veri�cation systems, such as HOL [19] and the Boyer-Moore prover [5], the distin-
guishing characteristic of PVS is that it supports a highly expressive speci�cation language with a
very e�ective interactive theorem prover in which most of the low-level proof steps are automated.
The system consists of a speci�cation language, a parser, a type checker, and an interactive proof
checker. The PVS speci�cation language is based on higher-order logic with a richly expressive type
system so that a number of semantic errors in speci�cation can be caught during type checking.
The PVS prover consists of a powerful collection of inference steps that can be used to reduce a
proof goal to simpler subgoals that can be discharged automatically by the primitive proof steps

4

of the prover. The primitive proof steps involve, among other things, the use of arithmetic and
equality decision procedures, automatic rewriting, and BDD-based Boolean simpli�cation.

2.4 Related Work

Microprocessor and microcode veri�cation is not new. A number of microprocessor designs have
been formally veri�ed [2, 11, 12, 20, 41]. Microcode veri�cation was pioneered by Bill Carter [25]
at IBM in the 1970's and applied to elements of NASA's Standard Spaceborne Computer [25]; in
the 1980's a group at the Aerospace Corporation veri�ed microcode for an implementation of the
C/30 switching computer using a veri�cation system called SDVS [12]; and a group at Inmos in
the UK established correctness across two levels of description (in Occam) of the microcode for the
T800 oating-point unit using mechanized transformations [1].

Several groups have performed automated veri�cation of non-microcoded processors, of which
Warren Hunt's FM8501 [20] and subsequent FM9001 [21] are among the most substantial. The
problems of pipeline correctness were studied previously by Srivas and Bickford [34], by Saxe and
Garland [30], Burch and Dill [7], and Windley and Coe [42]. A very simple microcoded processor
design developed by Mike Gordon called \Tamarack" serves as something of a benchmark for
microprogram veri�cation and was considered quite a challenge not so long ago [22]. PVS is able
to verify the microcode of Tamarack completely automatically in about �ve minutes [13].

Other projects have used automatic theorem provers to reason about programs written in low-
level languages. A simple machine is described precisely and the machine code that implements an
operating system kernel is proved to implement correctly several properties needed of an operating
system kernel [4]. Most of the instructions of a 68020 processor have been formalized and some
C subroutines compiled to the 68020 are speci�ed and checked mechanically [6]. Some programs
written for the FM9001 have been proved correct using a theorem prover, including some proved
to achieve desired real-time system properties [39, 40]. Another formalized processor, the MIPS
R3000 [23], has had the implementation of a round-robin scheduler proved correct using a theorem
prover [16]. Such proofs of low-level programs have distinct goals from the AAMP-FV e�ort, as
none veri�ed the correct operation of microcoded instructions. However, there are many similarities
in the structure of the underlying proofs.

2.5 Formal Veri�cation of the AAMP5

The AAMP-FV project grew out of an earlier e�ort to verify formally the microcode in another
Rockwell microprocessor, the AAMP5 [27, 37, 35, 38, 36]. The AAMP5 was designed to be object
code compatible with the earlier AAMP2 while providing a threefold improvement in throughput.
The AAMP2 was developed as a general purpose microprocessor for use in a variety of avionics
displays and global positioning systems. It has a large, complex instruction set, supports a variety of
data types, implements in hardware many of features needed to support high-level block structured
languages, and provides extensive support for multi-tasking and error handling.

To obtain a threefold improvement in performance, the AAMP5 implemented the AAMP2
instruction set using internal pipelining and look ahead fetching of both instructions and data.
Since it provides high performance in a general purpose processor, the AAMP5 is one of the
most complex microprocessors to which formal methods have been applied. One measure of the

5

complexity of a processor is the size of its implementation. The AAMP5 contains some 500,000
transistors, as compared to some tens of thousands in previous formally veri�ed designs and 3.1
million in an Intel Pentium.

Even so, the AAMP5 project succeeded in demonstrating the technical feasibility of the ap-
proach. Over half the AAMP5 instruction set was formally speci�ed at the macroarchitecture
level, and all of the microarchitecture needed for formal veri�cation of the microcode was formally
speci�ed. The microcode for eleven instructions, representative of several instruction classes, was
proven correct in the absence of interrupts.

Another key result was the discovery of both actual and seeded errors. Two actual microcode
errors were discovered during development of the formal speci�cation and removed before �rst
fabrication of the microprocessor, illustrating the value of simply creating a precise speci�cation.
Two additional errors seeded by Collins in the microcode were systematically uncovered by SRI
while doing correctness proofs. One of these was an actual error that had been discovered by Collins
after �rst fabrication but left in the microcode provided to SRI. The other error was designed to
be unlikely to be detected by walk-throughs, testing, or simulation.

Several other results emerged during the project, including the ease with which practicing
engineers became comfortable with PVS, the need for libraries of general-purpose theories, the
usefulness of formal speci�cation in revealing errors, the natural �t between formal speci�cation
and inspections, the di�culty of selecting the best style of speci�cation for a new problem domain,
the high level of assurance provided by proofs of correctness, and the need to engineer proof
strategies for reuse.

2.6 Overview of Processor Correctness

The veri�cation of a microprocessor normally involves specifying the processor as a machine that
executes instructions at two levels | the macro and the micro level | and then proving a desired
correctness condition that relates the behavior of the processor at these two levels. The macro level
speci�cation describes the e�ect of executing an instruction on the state visible to an assembly
language programmer. The micro level speci�cation describes the processor at the register-transfer
level, de�ning the e�ect of executing an arbitrary microinstruction on the movement of data between
the registers and other components in the processor's design.

Micro� state

Abstraction Abstraction

s0

u -f1
t -f2

t - t - t - t - t -fn

sV

u

6
u
SV

6
Macro� state

S0
u -

F

Figure 2.1: Pictoral Representation of Microcode Correctness

Figure 2.1 represents the correct operation of a microcoded instruction. Three kinds of instruc-
tion execution properties are used to formalize the desired processor behavior.

6

� The most important correctness properties are the commutativity theorems illustrated in Fig-
ure 2.1. These consist of showing that the sequence of microinstructions f1; f2; :::; fn making
up each machine instruction F causes a corresponding change in the micro-state s0 as F does
to the macro-state S0. This is done by de�ning a function Abstraction that maps elements
of the micro state to elements of the macro-state and proving that F (Abstraction(s0)) =
Abstraction(fn(:::(f2(f1(s0))):::)):

� Several assumptions about the initial micro state s0 are needed to show that the commu-
tativity theorems hold. A micro-state that satis�es these assumptions is called a visible

state, represented in Figure 2.1 with larger circles. Showing that the �nal micro-state of a
microcoded instruction's execution (micro-state sV) is also a visible state ensures that execu-
tion of the microcode for each machine instruction leaves the processor in the proper state for
the next machine instruction. We call correctness statements of this kind visibility theorems.

� Other necessary correctness properties include invariants on each of the sequence of micro-
states s0...sV during execution of an instruction. We call correctness theorems of this kind
invariant theorems.

Chapters 4 and 5 describe in greater detail the AAMP-FV macro and microarchitectures and
their speci�cation in PVS. Chapter 6 discusses the theorems proved about AAMP-FV microcode.

7

Chapter 3

Project Goals and History

This chapter discusses the motivation, tasks, and level of e�ort devoted to the AAMP-FV project.

3.1 Project Goals

The main goal of the AAMP-FV project was to determine if formal veri�cation of microcode could
be performed in a cost e�ective fashion for a processor designed for use in ultra-critical applications.
While the earlier AAMP5 project succeeded in demonstrating the technical feasibility and value of
formal veri�cation, the cost was quite high. Simply dividing the total project hours by the number
of instructions veri�ed resulted in a �gure of 308 hours per instruction.

Those close to the project understood that this greatly exaggerated the true cost. The AAMP5
project was highly exploratory, making it di�cult to determine what portion of the project cost
should be attributed to mastering a new technology and what portion would be incurred using the
same approach on future projects. Large parts of the project were devoted to the development of
supporting libraries, such as the bit vectors, and considerable time was spent by SRI in becoming
familiar with the AAMP5 and by Collins in mastering PVS. In addition, only a few instructions in
each class were veri�ed before moving on to the next class; far more instructions could have been
completed if only one or two classes had been attempted. Finally, time simply ran out before a
large number of the proofs could be completed, even though much of the necessary infrastructure
had been put in place.

To get a better estimate of the true cost of formal veri�cation of microcode, NASA, SRI, and
Collins decided to repeat the experiment with a di�erent processor, the AAMP-FV, to determine if
the expertise gained during the AAMP5 project could be used to bring the cost of formal veri�cation
down to an acceptable level.

An advantage of the AAMP5 project was that formal methods were applied in parallel with
the development of an actual microprocessor. However, this also had its drawbacks. The size and
complexity of the AAMP5 made it a formidable example for mastering formal methods. Also,
while intended for critical applications such as avionics displays and global positioning system, the
AAMP5 was not developed for use in the most critical applications such as autoland and y-by-wire.
At the conclusion of the AAMP5 project, it was generally felt that if a follow-on e�ort were to be
undertaken, it should focus on a processor speci�cally designed for use in ultra-critical applications.

8

Unfortunately, an actual processor meeting these criteria was not scheduled for development in the
near future.

As a result, the the AAMP-FV is a paper and pencil design of a processor representative of one
that would be used in ultra-critical applications such as autoland or y-by-wire. To make it easier
to verify, either by traditional methods or by formal methods, it is simpler than other members
of the AAMP family. It has a smaller instruction set, fewer data types and addressing modes, a
at address space, is not pipelined, and prefetches only in that reads are performed a word at a
time and a word may contain up to two instructions. Even so, the AAMP-FV is not a toy design.
If fabricated, it would contain approximately 100,000 transistors, as compared to some 500,000
transistors in the AAMP5.

3.2 Project History

The main activities of the AAMP-FV project and the level of e�ort invested in each are shown in Ta-
ble 3.1. Unlike the AAMP5 project, the speci�cation in PVS of the macroarchitecture (instruction
set) and microarchitecture (register transfer level) was well understood by the time the AAMP-FV
project was started and was done almost entirely by Collins. Speci�cation of the AAMP-FV macro-
architecture has taken 130 hours to date and consists of 3,764 lines of PVS covering 54 instructions.
In contrast, development of the AAMP5 macroarchitecture speci�cation took 941 hours, consisted
of 2,550 lines of PVS, and covered 108 instructions [27]. Speci�cation of the AAMP-FV microar-
chitecture took only 90 hours and consists of 3,496 lines of PVS, as compared to approximately
1,100 hours and 2,679 lines of PVS for the AAMP5 [27].

This signi�cant (almost an order of magnitude) reduction in the time to specify the micro and
macro architectures occurred because of the experience gained on the AAMP5, reuse of existing
libraries, and the simpler architecture of the AAMP-FV. Of these, we believe the experience gained
and the reuse of existing libraries, particularly the bit vectors, played the more signi�cant role.
While the simplicity of the AAMP-FV certainly made the initial development of the proofs and
speci�cations easier, the AAMP5 and AAMP-FV speci�cations are of roughly comparable com-
plexity. In fact, AAMP-FV macro and micro architecture speci�cations are actually larger than
the corresponding AAMP5 speci�cations. This is because 1) much of the complexity of the AAMP5
was avoided by creating property oriented speci�cations of many components that abstracted away
from internal details not required to prove the correctness of the microcode and 2) the AAMP-FV
is speci�ed in a di�erent style that emphasizes clarity and the use of extensive comments.

On the AAMP5 project, most of the proofs of correctness were done by SRI, with approximately
800 hours spent verifying 11 instructions. A key goal of the AAMP-FV project was to ensure that
Collins became experienced in using the PVS prover. For some classes of instruction, work on the
AAMP5 provided su�cient experience for Collins to complete the proofs. For other classes, SRI
developed the initial proofs and Collins completed the proofs for the remaining instructions in the
class. SRI also focused on proofs that were common to all instructions, such as verifying the logic
for stack adjustment.

As discussed in Chapter 6, the correctness proofs break down naturally into three parts, the
micro correctness proofs that establish the correctness of the microcode at the register-transfer
level, the proofs of common microcode such as that for adjusting the stack cache, and the macro

lift proofs that show that the change at the register-transfer level implements the correct behavior
at the instruction set level.

9

Table 3.1: Level of E�ort

Performed Start Stop Hours

Project Management

Planning Collins Oct 94 Oct 96 83

Weekly Meetings Collins Oct 94 Oct 96 172

Project Support

Training Collins Mar 95 Aug 96 212

Con�guration Management Collins Oct 94 Oct 96 26

Tool Support Collins Oct 94 Oct 96 48

Speci�cation of the Macroarchitecture (3,693 Lines of PVS)

Develop Macro Speci�cation Collins Feb 95 Jun 95 130

Speci�cation of the Microarchitecture (3,496 Lines of PVS)

Develop Micro Speci�cation Collins Nov 94 Feb 95 90

Translate Microcode Collins Feb 95 May 96 77

Proofs of Correctness - Standard Instructions

Micro Correctness Collins Mar 95 Oct 95 477
SRI 520

Macro Lifts Collins Aug 95 Mar 96 238
SRI 40

Common to All Instructions SRI 240

Clean-Up Collins Aug 96 Aug 96 69

Proofs of Correctness - Complex Instructions

Micro Correctness Collins Oct 95 Jul 96 385
SRI

Macro Lifts Collins Apr 96 Aug 96 38

A summary of the AAMP-FV instructions and their proof status is shown in Table 3.2. Fifty-
four of the 80 AAMP-FV instructions were veri�ed. As can be seen in Table 3.1, 997 hours were
spent on the micro correctness proofs and 278 hours were spent on the macro lift proofs for these
instructions. The proof of these instructions were all similar, and after the �rst one in a class was
completed, could be done in a few hours for each instruction. In many ways, this work typi�ed an
engineering process rather than a exploratory research program.

An additional 240 hours were spent verifying microcode common to all instructions, such as the
stack adjust logic. While many of the techniques developed for veri�cation of the simple AAMP-FV
instructions could be applied here, this work was quite exploratory. Fortunately, it only had to be
done once for this project.

During the course of the project, a number of proofs were broken as the speci�cations were
changed to facilitate completion of other proofs. Rather than �xing these proofs immediately, they
were left until all changes were completed and then �xed at the end of the project. Sixty-nine hours
was spent on this activity.

If training is omitted, 2,074 hours were spent in direct veri�cation of these 54 instructions.

10

Table 3.2: Proofs Completed

Instruction Class Proof

Completed To Be Done

Stack Management 5 DUP, DUPD, EXCH, EXCHD, POP

Literal Data 5 LIT4, LIT16, LIT24, LIT32 LIT8

Reference Data 11 REF24, REF8, REFA, REFD24,

REFD8, REFDA, REFDL, REFDL4,

REFL, REFL4, REFMSK

Assign Data 12 ASN24, ASN8, ASNA, ASND24,

ASND8, ASNDA, ASNDL, ASNDL4,

ASNL, ASNL4, ASNMSK

ASNBIT

Mutual Exclusion 1 SWAP

Operand Location 1 LOCL

Logical 4 AND, NOT, OR, XOR

Arithmetic Integer 10 ABS, ABSD, ADD, ADDD, SUB,

SUBD

IDIV, IDIVD, IMPY, IMPYD

Fractional 6 FDIV, FDIVD, FMPY,

FMPYD, FMPYE, X5

Relational 4 EQ, EQD, GR, GRD

Type Conversion 2 EXTS TRUNC

Shift 4 SHL, SHLD, SHR, SHRD

Control Branch 7 SKIP, SKIP8, SKIPF, SKIPF8, SKIPT,

SKIPT8, JUMP24

Call 1 CALL

Exception 3 CKINTS, CLRINT

Return 1 RETURN

Context Switch 4 TRAP, USER

Miscellaneous 4 NOP VSN

This gives us an average rate of about 38 hours per instruction, almost an order of magnitude
reduction from the costs observed on the AAMP5 project. We believe the experience gained on the
AAMP-FV project would allow us to cut this cost in half on a similar project.

However, the nature of the project changed qualitatively as the proofs progressed to instructions
with more complex microcode, such as the multiply, divide, shift, call, and return instructions. Most
of the AAMP-FV instructions have microcode simple enough that it can be veri�ed directly through
symbolic execution with PVS (see Section 6.2.1). This technique broke down on the more complex
instructions because the expressions generated through symbolic execution grew too large to manage
with PVS. As a result, the project entered into another exploratory phase as new techniques, such
as proof by induction over the number of microcycles, were developed (Section 6.2.2). While very
valuable, this phase was characterized by a high learning curve and very high costs per instruction.
As with the AAMP5, we believe this cost could be dramatically reduced on subsequent projects.

Currently, the micro correctness and macro lift proofs are largely completed for the 54 instruc-
tions listed in Table 3.2. Of the complex instructions, Collins has completed the micro correctness

11

proofs of the CALL instruction and SRI has completed the micro correctness proofs of the IMPY
and SHR instructions. Some supporting theorems that these proofs depend, such as lemmas involv-
ing bit-vector expressions, have not been completed. Completion of these proofs has been deferred
because they are expected to be routine.1

1In a later phase of the project, SRI completed the proofs of these supporting lemmas, as well as the proofs of
some of the more complex instructions such as CALL and IMPY. These proofs were ran top-to-bottom to ensure no
lemma was left unproved in the proof chain. The axioms in the new speci�cation have not been validated by Collins,
but the proofs have been installed and executed by them. SRI also explored in this later phase ways to automate the
proofs and make them more e�cient. This work is documented in [33].

12

Chapter 4

The Macroarchitecture: The

Programmer's View of the AAMP-FV

The AAMP-FV macroarchitecture is precisely the view of the AAMP-FV that an application pro-
grammer must understand to write assembly code. This section describes the AAMP-FV macro-
architecture informally, then describes how a formal model of the macroarchitecture was de�ned in
PVS.

4.1 Overview of the AAMP-FV Macroarchitecture

Important features of the AAMP-FV macroarchitecture include its organization of memory, the
process stack, stack cache, internal registers, instruction set, and support for multi-tasking and
error handling. These are discussed in the following sections.

4.1.1 Organization of Memory

The AAMP-FV supports up to four separate address spaces, where each address space consists
of 16M 16-bit words. Unlike the AAMP5, an AAMP-FV memory space is not segmented and is
addressed via a single 24-bit address. Each address space is characterized as being either code or
data memory and user or executive memory.

In a speci�c product, the system designers may choose whether to use the code/data and
user/exec lines on the processor to associate separate physical memory with each address space. If
they choose to use both lines, a memory access references one of four physical memory banks, one
for each address space. If they choose to use neither line, all memory accesses reference the same
bank regardless of the code/data and user/exec lines, folding the four address spaces onto the same
physical memory. It is also possible to use only the code/data or the user/exec line when accessing
memory, making four memory con�gurations possible.

4.1.2 Process Stack

As with all members of the AAMP family, the process stack is central to the AAMP-FV macro-
architecture, implementing in hardware many of the features needed to support high-level block

13

Caller's PC (LS)

Caller's PC (MS)

Active PROCID

Caller's LENV (LS)

Caller's LENV (MS)

Local 0

Local 1

Local n

Arguments

Prior

Accumulator

Stack

Prior

Stack

Mark

Prior

Local

Environments

TOS -

LENV -

Increasing

Memory

Addresses

?

6
Accumulator

Stack

?
6

Stack
Mark

?
6

Local
Environment

?

6

Active
Stack
Frame

?6

Calling
Procedure's

Stack
Frames

?

Figure 4.1: The Process Stack

structured languages and multi-tasking [3]. Each task maintains a single process stack, illustrated
in Figure 4.1.

At the top of the process stack is the accumulator stack used for manipulation of instruction
operands and pointers. Directly below the accumulator stack is the stack mark of the current
procedure. The stack contains the information needed to restore the calling procedure upon return
from the current procedure (Caller's PC and LENV, most signi�cant and least signi�cant words),
to access local variables within the calling procedure (Caller's LENV), and to locate the current
procedure's header and executable code (Active PROCID).

Below the stack mark is the current procedure's local environment consisting of its local variables
and any parameters passed from the calling procedure. A procedure's local environment, stack

14

mark, and accumulator stack form a stack frame. Beneath the current procedure's stack frame
is the frame of its calling procedure, and so on. Note that the stack grows downward towards
decreasing memory addresses.

4.1.3 Stack Cache

As a stack machine, the AAMP-FV performs all data computations and manipulations on operands
that have been pushed onto the top of the process stack. To improve e�ciency, the top few words
of the stack are actually maintained in internal registers referred to as the stack cache. Consistency
between the stack cache registers and external memory is maintained through stack adjustments

that read additional operands into the registers or write operands out to memory prior to the
execution of each instruction. Studies have shown that stack adjustments are not required in about
95 percent of the instructions executed in a typical embedded application. This encachement
technique is an essential performance feature of the AAMP-FV.

Ideally, the stack cache would be invisible to the application programmer. However, in the
interest of e�ciency, its presence is made visible to the application programmer in two ways. First,
the AAMP-FV does not check memory accesses to determine if the word being referenced lies in
the vicinity of the stack cache. As a result, REF (reference) and ASN (assign) instructions that
address this region will obtain or modify the actual values stored in memory rather than those held
in the stack cache. In practice, this does not pose a problem since well behaved applications do
not directly read or write to memory used to implement the accumulator stack. Since applications
seldom write assembly code for the AAMP-FV (recall that it is designed for use with high order,
block structured languages such as Ada), this is primarily a concern for the compiler writers.

Second, as the process stack shrinks the words of memory uncovered by the stack may or may
not contain the values the application programmer expects, depending on whether a stack cache
adjustment had reconciled the contents of the stack cache with physical memory. Again, this is
not a problem in practice as application programs should not directly access the area of memory
reserved for the accumulator stack. However, a formal speci�cation of the AAMP-FV requires that
this behavior be captured in the macro-architecture speci�cation as discussed in Section 4.2.4.

4.1.4 Internal Registers

The AAMP-FV maintains several internal registers that are visible to the application programmer
in that they determine how the processor executes each new instruction. The TOS (top of stack)
register points to the topmost word in the process stack. The LENV (local environment) register
points to the local environment of the current procedure and is used in addressing local variables.
The PAGEREG (page register) register maintains the base address used in paged memory ad-
dressing mode. TOS, LENV, and PAGEREG are implemented as 32-bit registers, although only
the bottom 24 bits are used. The PC (program counter) contains the byte address of the next
instruction to be executed and is actually implemented as a 24-bit address register.

In addition, the AAMP-FV maintains the UM (user mode) bit and MASK and INTREG regis-
ters. The UM bit is set high while the processor is in user mode and low while in executive mode.
This value is brought out of the processor via the user/exec line and can be used to distinguish user
and executive mode memory references as discussed in Section 4.1.1. Finally, the INTREG register
holds the status of 8 prioritized interrupts, and the MASK register is used by the application pro-

15

grammer to mask (inhibit) these interrupts. The two highest priority interrupts are non-maskable,
i.e., they cannot be inhibited by the application programmer.

4.1.5 Instruction Set and Data Types

The AAMP-FV instruction set consists of 80 instructions and is CISC-like, closely resembling the
intermediate output of most compilers. Instructions area all 8 bits long, yielding high throughput
and code density. The instruction set supports 16-bit and 32-bit integers, 16-bit and 32-bit fractional
number, and 16-bit logical variables.

The instruction set can be divided into several classes, as shown in Table 3.2 on page 11. Of
the 80 AAMP-FV instructions, 23 are Reference or Assign instructions that move data between the
top of the process stack and data memory. The Logical, Arithmetic, Relational, Type Conversion,
and Shift instructions, which perform a prescribed operation on the top few elements of the process
stack and push the result back onto the stack, account for an 30 instructions. An additional 12
instructions deal with program control, such as branch, call, return, and interrupt handling. The
remaining instructions duplicate or move operands on the top of the stack, push literal data onto
the stack, support mutual exclusion and operand location, or perform miscellaneous functions such
as NOP (no operation).

4.1.6 Multi-Tasking and Error Handling

The AAMP-FV stack architecture is designed for real-time multi-tasking applications where the
processor is time-shared among two or more concurrent tasks. Each task maintains its own process
stack in memory, along with a single stack for the executive. This provides an e�cient means to
suspend and resume each task since only the contents of internal registers need to be saved and
restored. If the user/exec line is used to partition memory addresses, the executive stack will reside
in a separate memory space from the user stacks.

At system initialization or following a system reset, the processor is placed into executive mode
and begins execution of the executive procedure, reading the address of the executive procedure
and stack from known locations in memory. The executive selects the next user task to be activated
or resumed, places the PSD (Process State Descriptor) of the user task on the top of the executive
stack, and executes a USER instruction to initiate a context switch to user mode. This consists of
storing the processor's registers in the executive PSD, loading its registers from the the user PSD,
and setting the UM bit high. The processor then starts execution of the user task, continuing until
an interrupt or trap occurs.

Interrupts are asynchronous hardware inputs to the processor, while traps are generated by
software, usually through execution of a TRAP instruction. The occurrence of a hardware interrupt
or a TRAP while in user mode initiates a context switch by the processor back to executive mode,
reversing the earlier context switch. First the UM bit is set low, the processor's registers are stored
in the user PSD and loaded from the executive PSD, and the interrupt or trap number is pushed
on the executive stack. The processor then resumes execution of the executive process.

Control is passed back and forth between the executive and user tasks following this protocol.
Unrecoverable errors encountered while in user mode, such as execution of an illegal instruction,
can also cause control to be transferred back to the executive. For example, execution of the USER
instruction while in user mode is treated as an illegal instruction and transfers control back to
the executive. Unrecoverable errors encountered while in executive mode place the processor in

16

an error state in which it idles pending reset. These include execution of an illegal instruction or
TRAP instruction while in executive mode.

Up to eight prioritized interrupts can be stored in the INTREG register. Of these, the lower
six can be masked by the application by setting bits in the MASK register, inhibiting transfer
back to the executive even when the corresponding interrupt is pending. The two highest priority
interrupts cannot be masked by an application task. An interrupt causing a transfer to executive
mode is automatically cleared by that context switch. The AAMP-FV also provides a RST (reset)
line that can be used to cause a processor reset. This can be viewed as the highest level interrupt.

Interrupts are serviced only at instruction boundaries and only while in user mode. Interrupts
that occur while in executive mode (other than a system reset) are held pending in the INTREG
register until control is transferred back to a user task, at which time they initiate a context switch
back to executive mode. Of course, the status of the INTREG register can be interrogated by the
executive and the executive could be designed to avoid switching to user mode while interrupts are
pending if desired.

Exceptions, such as arithmetic overow, do not cause an automatic switch to executive mode as
in the AAMP5. Instead, exceptions raise the OVR (overow) line from the processor. This signal
can be used on the external circuit board to raise one of the eight hardware interrupts, causing the
exception to be handled via the normal interrupt handling mechanism.

17

4.2 Formal Speci�cation of the Macroarchitecture

The macroarchitecture speci�cation formalizes the assembly-level programmer's view of the AAMP-
FV and its instruction set. The PVS speci�cation of the AMMP-FV models the processor as a state
machine. The state of the macro machine includes external memory and the internal state that
a�ects its observable behavior, such as the internal registers de�ning the process stack. The next
state function speci�es the e�ect of executing the current instruction pointed to by the program
counter. An overview of the import chain for the macroarchitecture speci�cation is shown in
Figure 4.2.

In PVS, a theory gains access to another theory's de�nitions and axioms by importing that

AAMP FV
Macro Defn
���������������������9

XXXXXXXXXXXXXXXXXXXXXz

������������

HHHHHHHHHHHj

�
�

�
�

��	

@
@
@
@
@@R

ASNA
Macro
Defn

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

� � �

CALL
Macro
Defn

@
@
@
@
@
@
@
@
@
@
@
@R

� � �

TRAP
Macro
Defn

@
@
@@R

� � �

USER
Macro
Defn

�
�

��	

� � �

RETURN
Macro
Defn

�
�

�
�

�
�

�
�

�
�

�
�	

� � �

REFA
Macro
Defn

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��=

Executive
Service
Routines

?

Macro State

�
�

�
�

�
�=

Z
Z
Z
Z
Z
Z~

Memory

Z
Z
Z
Z
Z
Z~

Opcodes

AAMP FV
Bit Vectors

Figure 4.2: Macroarchitecture Speci�cation Hierarchy

18

theory. Each box in the �gure represents a theory in the speci�cation. Importation of a theory is
depicted by an arrow from the importing theory to the imported theory.

At the topmost level is the AAMP FV macro defn theory. This theory simply imports the def-
inition of each instruction, each of which is de�ned in its own theory. The majority of these are
de�ned directly in terms of the change they cause in the macro architecture state, de�ned in the
macro state theory. A few of the more complex instructions, such as TRAP and USER that involve a
context switch, import additional de�nitions such as the executive service routines. Since the
macroarchitecture state includes external memory, the macro state theory imports the de�nition
of memory, which in turn imports the de�nition of AAMP-FV speci�c bit vectors. Although it
is not shown in Figure 4.2, the AAMPFV bit vectors imports the bit vectors library in which the
detailed properties and operations of bit vectors (i.e., sequences of bits) are de�ned. The macro

state theory also imports the de�nition of the AAMP-FV opcodes. The following sections discuss
these theories in greater detail.

4.2.1 Bit Vectors

The AAMPFV bit vectors theory, shown in Figure 4.3, de�nes some of the most common bit vector
types and constants used in the speci�cation of the AAMP-FV. Another important role of this

AAMPFV_bit_vectors: THEORY

BEGIN

IMPORTING bv_top

%--

% Common bit vectors

%--

byte : TYPE = bvec[8]

word : TYPE = bvec[16]

address : TYPE = bvec[24]

register : TYPE = bvec[32]

%--

% Common conversions

%--

r2a(r : register) : address = r^(23,0)

a2r(a : address) : register = fill[8](0) o a

%--

% Common constants

%--

Hx00 : bvec[8] = nat2bv(0)

...

Hx80000000 : bvec[32] = int2bv(-exp2(31))

END AAMPFV_bit_vectors

Figure 4.3: PVS Speci�cation of AAMP-FV Bit Vectors

19

theory is to provide a single point for importing the bit vectors library, via theory bv top, in which
the representation and operations of the bit vectors are de�ned. Operations such as concatenation
(o), extraction (^), addition (+), and subtraction (-) of bit vectors are de�ned in this library.
AAMP-FV speci�c functions, such as r2a that converts a 32-bit register to a 24-bit address and
a2r that converts a 24-bit address to a 32-bit register, are de�ned in terms of the more fundamental
extraction and concatenation operations. Details of the bit vectors and their operations can be
found in [10].

4.2.2 Memory

As discussed in Section 4.1.1, AAMP-FV memory can be con�gured in four di�erent ways by the
system designer. The PVS speci�cation of AAMP-FV memory, shown in Figure 4.4 de�nes all four
possible con�gurations.

A memory space is de�ned as a function mapping 24-bit addresses into 16-bit words of memory.
Memory itself is de�ned as four memory spaces, where each memory space is indexed by two boolean
values representing the value of the code/data and user/exec lines. All accesses to memory are then
written in terms of two functions, read and write. Read takes an address, speci�ed as a value of
the code/data line, user/exec line, and a memory address, and returns a word of memory. Write
takes a similar address triple and a word and updates memory at the speci�ed address. Whether
the memory interface unit uses the code/data or user/exec lines to partition memory is encoded
in two boolean constants, separate code data memory spaces and separate user exec memory

spaces. If both of these constants are true, then both the code/data and user/exec arguments to
read and write are used to direct access to the appropriate memory space. If both are false, then
the code/data and user/exec arguments are ignored and only the (false,false) partition is ever
accessed. Two additional con�gurations can be modeled by setting one of the constants true and
the other false.

The actual values of separate code data memory spaces and separate user exec memory

spaces are left as unspeci�ed constants. In this way, the correctness proofs are valid regardless of
which memory con�guration is chosen by the system architect. This typically manifests itself as
one or two additional proof branchs in the macro-lift proofs (Section 6.4).

4.2.3 Macroarchitecture State

The macroarchitecture state de�nes the portion of the AAMP-FV state seen by the application pro-
grammer. Its speci�cation in PVS is given in theory macro state shown in Figure 4.5. The macro-
architecture state consists of an instantiation of memory (de�ned in Figure 4.4), the PAGEREG,
TOS, PC, LENV, MASK, and INTREG registers, and the UM ag (described in Section 4.1.4).

Also included in the macro state theory are a number of auxilliary functions closely related
to the macroarchitecture state. For example, fetch returns a byte of code memory located at a
speci�c byte address. Note that it right shifts the byte address to form a word address, uses the
read function to retrieve that word of code memory, and then uses the low-order bit of the address
to select the appropriate byte of the word retrieved. This function is typically used to reference
bytes of immediate data using the PC as an operand. De�ning it once here avoids repeating this
operation throughout the macroarchitecture speci�cation. Top is another useful function; it returns
the ith word from the top of the process stack. The next macro state function is discussed in the
next section.

20

memory: THEORY

BEGIN

IMPORTING AAMPFV_bit_vectors

%--

% A memory space is a function from a 24-bit address to words of memory.

% Memory consists of four memory spaces indexed by the values of the

% code/data and user/exec lines.

%--

memory_space : TYPE = [address -> word]

memory : TYPE = [[bool,bool] -> memory_space]

%--

% The two following boolean constants determine which of the four possible

% memory models is used. They are deliberately left unspecified.

%--

separate_code_data_memory_spaces: bool

separate_user_exec_memory_spaces: bool

%--

% Write updates a word in one of the four memory spaces.

%--

write(cd: bool, ue: bool, a: address, w: word, m: memory) : memory =

IF separate_code_data_memory_spaces

THEN IF separate_user_exec_memory_spaces

THEN m WITH [(cd,ue)(a) := w]

ELSE m WITH [(cd,false)(a) := w]

ENDIF

ELSE IF separate_user_exec_memory_spaces

THEN m WITH [(false,ue)(a) := w]

ELSE m WITH [(false,false)(a) := w]

ENDIF

ENDIF

%--

% Read retrieves a word from one of the four memory spaces.

%--

read (cd: bool, ue: bool, a: address, m: memory) : word =

IF separate_code_data_memory_spaces

THEN IF separate_user_exec_memory_spaces

THEN m(cd,ue)(a)

ELSE m(cd,false)(a)

ENDIF

ELSE IF separate_user_exec_memory_spaces

THEN m(false,ue)(a)

ELSE m(false,false)(a)

ENDIF

ENDIF

END memory

Figure 4.4: PVS Speci�cation of AAMP-FV Memory

21

macro_state: THEORY

BEGIN

IMPORTING memory, opcodes

%--

% AAMP-FV macro state

%--

macro_state: TYPE = [# mem : memory, % Memory

pagereg : register, % Base address for paged data

tos : register, % The top of the process stack

pc : address, % Program counter

lenv : register, % Local environment

um : bool, % User/executive mode

mask : byte, % Interrupt mask

intreg : byte #] % Interrupt state.

%--

% Fetches the byte of code memory at byte address a

%--

fetch (ue: bool, a:address, m:memory): byte =

LET w = read(code, ue, fill[1](0) o a^(23,1), m)

IN IF ishigh(a^0) THEN w^(15,8) ELSE w^(7,0) ENDIF

%--

% Returns the ith word from the top of the process stack.

%--

top(st:macro_state, i:nat):word = read(data, um(st), r2a(tos(st))+i, mem(st))

...

%--

% Defines the next state of the macro machine.

%--

next_macro_state: [macro_state -> macro_state]

END macro_state

Figure 4.5: PVS Speci�cation of AAMP-FV Macroarchitecture State

4.2.4 Next Macro State Function

Each AAMP-FV instruction is speci�ed in PVS as a state transition function, next macro state,
over the macroarchitecture state de�ned in Figure 4.5. For convenience, the speci�cation of each
instruction is placed in a separate theory. For example, the speci�cation of the REFA instruction
is given in theory REFA macro defn shown in Figure 4.6. The REFA instruction pops two words o�
the top of the process stack, concatenates them together and uses the lower 24 bits as the address
WA of a word of memory XS to be read and placed on the top of the stack. The axiom in Figure 4.6
states that if the current opcode is REFA and the word address WA and program counter do not lie in
the region of the stack cache, the new macro state is the current macro state st with an unspeci�ed

22

REFA_macro_defn [(IMPORTING AAMPFV_bit_vectors)

unspecified: [nat -> word]] : THEORY

BEGIN

IMPORTING macro_state

st: VAR macro_state

%---

% The REFA instruction uses the double word that is at the top of the

% stack as the absolute address for a single precision read, pushing the

% word read on the stack.

% ---

REFA: AXIOM

(current_opcode(st) = REFA &

not_stack_cache_address(st)(WA) &

pc_not_in_cache_region(st) =>

next_macro_state(st) =

(st WITH [(mem) := write(data, um(st), r2a(newtos-1), unspecified(0),

write(data, um(st), r2a(newtos), XS, mem(st))),

(pc) := pc(st) + 1,

(tos) := newtos]

) WHERE XS = read(data, um(st), WA, mem(st)),

newtos = tos(st) + 1

) WHERE WA = (top(st,1) o top(st,0))^(23,0)

END REFA_macro_defn

Figure 4.6: PVS Speci�cation of REFA instruction

word written at the old top of stack (newtos - 1 1), the word XS located at memory location WA

written at the new top of stack location (newtos), the program counter pc incremented by one,
and the top of stack pointer tos set to its new value (tos(st) + 1).

The presence of the stack cache is visible in the REFA instruction in both of the ways mentioned
in Section 4.1.3. First, as indicated by the not stack cache address and pc not in stack cache

region predicates in the antecedent, the behavior of the instruction is not speci�ed if the word
being referenced or the program counter lie in the vicinity of the stack cache. Second, the word of
memory uncovered by the shrinking of the process stack has been set to an unspeci�ed word. Both
the predicates not stack cache address and pc not in stack cache region and the function
unspecified are left uninterpreted in the macroarchitecture speci�cation. Thus the application
programmer knows only that he can make no assumptions about the REFA instruction if the word
being referenced or the program counter lies in the vicinity of the stack cache (conservatively taken
to be at least the top 6 words of the stack). In similar fashion, he knows only that he will �nd some
word, unspecified(0), in memory at the location previously occupied by the top of the stack, but
cannot make any assumptions about the value of that word.

1Recall that the stack grows downward and two address words were popped prior to pushing the referenced word
onto the stack.

23

At the microarchitecture level, the values of these functions are de�ned and are used to complete
the proofs of correctness. The not stack cache and pc not in stack cache region functions are
precisely de�ned in terms of internal registers not visible to the application programmer and the
function unspecified is instantiated with the actual value that will be found at that location in
order to take the proof to completion.

24

Chapter 5

The Microarchitecture: The Register

Transfer View of the AAMP-FV

5.1 Overview of the AAMP-FV Microarchitecture

The microarchitecture speci�cation describes the AAMP-FV at the register-transfer level, i.e., it
speci�es the e�ect of an arbitrary microinstruction on the movement of data between the registers
and other components of the AAMP-FV. An overview of the microarchitecture is shown in Fig-
ure 5.1. The AAMP-FV microarchitecture can be divided into three main parts: the data path,
the microcontroller, and the bus interface unit.

5.1.1 The Data Path

The data path provides the data manipulation and processing functions required to execute the
AAMP-FV instruction set. It consists of a 16-word multi-port register �le, a 32-bit arithmetic logic
unit (ALU), shift logic, data and address interface, address incrementors, and instruction register
and parsing logic. To make address computations fast and to support double-precision arithmetic
instructions e�ciently, internal data paths are mostly 32-bits wide.

The register �le is a key element of the microarchitecture. Its multiport design is important in
achieving the parallelism needed for high execution speed and compact microcode. The register �le
contains the program counter (PC), Q register used in shift operations, interrupt mask (MASK),
top of stack (TOS), local environment (LENV), page register (PAGE), four scratch pad registers
(R0-R3), and the stack cache registers (STK0-STK5). Any of these registers can be output on the
32-bit A and B ports by providing the appropriate values to the A and B address inputs. Separate
ports are provided for shifting the Q register, providing a mask to the interrupt controller, and for
external address generation.

Register �le entries STK0 through STK5 comprise the stack cache and can contain up to six
16-bit operands from the top of the process stack, with the remainder of the stack residing in
external memory. Since these registers are addressed and output in pairs, 32-bit operands can be
processed just as e�ciently as 16-bit operands.

Single position shifts to the left or right are provided. Eight shift linkages provide e�cient
implementation of integer and fractional multiplication and division as well as shift instructions.

25

????

@@ ��

s6
+1

6
�PC

s
6

Save

Control Store ROM

6
Microinstruction Register

6 r r r 6 6

Priority
Interrupt
Controller

MASK

?

INT0�
r
r
r

INT7�

Register File

STK5 STK0

STK0 STK1

STK1 STK2

STK2 STK3

STK3 STK4

STK4 STK5
Stack Cache

R3

R2

R1

R0

PAGE

LENV

TOS

0 MASK

Q

0 PC
PC� -+0 +1 +2

Q� - +0 +1

Q� - Shifter

V[31:0]� Shifter

ALU

S R�
�
��

B
B
BB

6

B[31:16]
6

B[15:0]

6

s

6

A[31:16] -
s

6

A[15:0] -
@@

��

-

Parser

Inst Reg

Data Reg

data

?

byte
word

�

s
DATA

�

s�

@
@@

�
��

opcode

ADDRESS -

code addr -

data addr -

@
@@

�
��

-B addr

direct -
-
r r r

s -

@
@@

�
��

-A addr

direct -
s -
r r r

s -

Stack
Vector

?
Put/Pull

ROM

s

6

Figure 5.1: The AAMP-FV Microarchitecture

26

The ALU provides addition, subtraction, and logical operations on 32-bit bit-vectors. It also
provides indications of sign, all-zero, carry, and 16-bit and 32-bit overow. The R and S inputs
to the ALU are fed from multiplexing logic that allows the inputs to be drawn from a number of
di�erent sources, including variations of the register �le outputs, 16-bit data read from memory,
immediate byte and word �elds from the instruction stream, and microconstants.

5.1.2 The Microcontroller

The microcontroller consists of the microcode ROM, the logic to sequence and execute microin-
structions, and the stack adjust and interrupt logic.

The AAMP-FV is a microprogrammed machine wherein control is via a stored program in
ROM rather than discrete logic. This results in two levels of stored program in a system: one at
the micro level using microinstructions in the control-store ROM, and the other at the macro level
using machine language instructions stored in external code memory. In essence, each machine
language instruction is interpreted as a pointer to a sequence of microinstructions to be executed.
Each microinstruction causes one or more elemental operations to occur in the machine, such as
enabling a register to be loaded or selecting an ALU function to perform.

Instruction bytes are fetched from code memory two at a time and stored in the instruction
register. Execution begins with the translation of the opcode byte into a starting microprogram
address. The microinstruction at this location is then loaded into the microinstruction register, the
outputs of which con�gure the data paths and determine which operations are to occur during the
current microcycle.

While the current microinstruction executes, the microsequencer determines the address of the
next microinstruction to be executed. This can be the address of the current microinstruction
incremented by one, a jump address contained in the current microinstruction, a saved register
loaded from the microprogram counter to establish return linkage from a called microsubroutine,
or �xed addresses for initialization, interrupt servicing, and stack cache adjustments. In some cases,
the next microinstruction is conditional on the the state of selected status line.

Completion of the microprogram associated with the current machine instruction repeats this
cycle, causing the address associated with the next opcode to be loaded into the microsequencer.
An exception to this occurs when an interrupt is pending.

Interrupts are processed only at completion of the current machine instruction. While the
current machine instruction executes, up to eight prioritized interrupts can be captured in an
8-bit register. Once the current machine instruction completes, the microcontroller checks if an
unmasked interrupt is pending. If so, it selects the microaddress of the highest priority interrupt
service routine for execution. Each interrupt is reset when it is processed, and once all interrupts
are processed execution resumes with the next machine instruction.

The microsequence for each instruction assumes that su�cient operands are present in the stack
cache for the instruction to execute and that su�cient room is present in the stack cache to hold
the outcome of the instruction. The current status of the stack cache is maintained in the stack
vector register. At the start of each machine instruction, the microcontroller feeds the opcode and
the stack vector into the Put/Pull ROM, which determines if a stack adjustment is necessary. If
an adjustment is needed, the microcontroller enters one of two microsequences that either reads
an operand from memory into the stack cache or writes a word from the stack cache into memory.
Upon completion of this microsequence, the microcontroller restarts the machine instruction.

27

5.1.3 The Bus Interface Unit

The bus interface unit (BIU) contains the logic needed to move data between the AAMP-FV and
main memory, including the functions of bus arbitration, address generation, and data parsing.

Data is read or written to memory using the lower 24 bits of the Q register to address memory.
When writing, the operand is selected from either the high or low 16-bits from the register �le's A
port, simplifying the handling of both single and double precision writes. Data read from memory
is passed to the ALU as an S source. The register �le also supports separate loading of the high
and low halves of 32-bit destinations, accommodating the e�cient transfer of 32-bit operands into
the processor.

Instructions are fetched from code memory into the instruction register two bytes at a time.
These may consist of any combination of opcodes or immediate data. Opcodes are passed to
the microcontroller to initiate instruction execution. Immediate data bytes are fed to the ALU
as S-source operands. Since instructions are one byte in length, the 16-bit instruction register
provides partial look-ahead. When it is time to fetch an instruction, conditional logic �rst checks
to determine if the instruction is already present in the instruction register from the prior fetch.

The program counter is a 24-bit byte address. Since it is a byte address, must be shifted right
one bit with a �ll of zero to form a word address with the least signi�cant bit of the original
PC selecting between the high and low byte returned from memory. As a result, although the
AAMP-FV has a 224 word address space, programs can only reside in the lower half of the address
space.

Several AAMP-FV instructions use immediate data embedded in the instruction stream. To
maintain code density, immediate data is not required to be word aligned. To avoid manipulating
this data in the ALU, the BIU parses and extracts it from the instruction stream.

The BIU communicates with memory via several signals. The two primary transaction control
signals are the transaction request signal and the read/write line. The transaction request signal
indicates when the AAMP-FV is ready to perform a memory transaction. The read/write line
establishes whether the transaction is a read or write request. The exec/user line indicates the
mode (executive or user) of the processor and the code/data line indicates if the transaction is a
code (or immediate data) fetch or a data memory transaction. The exec/user line and the code/data
line can be used by external memory to select di�erent memory spaces. The address of the desired
word within this memory space is indicated by a 24-bit address bus. Data is transferred over the
16-bit data bus.

5.2 Formal Speci�cation of the Microarchitecture

The PVS microarchitecture speci�cation is a formal description of the the AAMP-FV microar-
chitecture and microcode. Each major component of the microarchitecture, such as the ALU or
the register �le, is described in one or more PVS theories. These speci�cations, together with a
variety of \glue" theories describing the data and control paths between the components, de�ne
the microarchitecture over which the microcode executes. Translation of the microcode into PVS
results in a speci�cation that de�nes how the microarchitecture state and memory are altered by
the execution of each microinstruction.

The microarchitecture speci�cation describes the AAMP-FV from the perspective of a mi-
crocode programmer and abstracts away some of the details of an actual hardware implementation.

28

For example, time is modeled in the microarchitecture using the natural numbers, where one unit
of time corresponds to one microcycle, i.e., the execution of one micro instruction. However, in an
actual implementation, each microcycle would consist of one or more clock cycles, or phases. Thus,
even though a memory read or write may actually take an indeterminate but �nite amount of time,
to the microcode each memory access takes one cycle. By abstracting away from the physical clock,
it is possible to provide a more concise de�nition of the microarchitecture and simplify the proofs.

Every ip-op, wire, register, and bus in the AAMP-FV microarchitecture is de�ned as a signal
of some type, where a signal is a function from time to a type such as a bit or a bitvector. Some
signals represent elements of the current \state" of the microarchitecture such as registers and
external memory. Other signals represent \connectors", such as bus lines, and are de�ned as a
combinatorial function of the current state.

At least two styles are commonly used in the formal speci�cations of hardware. In the functional
style, one de�nes the output signals of a component as functions of its input signals, letting the
signal de�nitions implicitly specify the connectivity between the components. In the predicative

style [18] commonly used in HOL [19], every hardware component is speci�ed as a predicate relating
the input and output signals of the component. A design is speci�ed in the predicative style as a
conjunction of the the component predicates, with signals on the internal wires used to connect the
components hidden by existential quanti�cation.

The functional style of speci�cation has several advantages in PVS. In particular, proofs are
able to exploit the automatic rewriting capabilities of PVS and tend to be more automatic than
when the speci�cation is written in a predicative style. However, there are some di�culties with
using the functional style in PVS. The �rst is that a name cannot be used until it is de�ned,
making it di�cult to model the feedback found in sequential circuits. It is also di�cult to de�ne
a hierarchy of circuit blocks. Hierarchy can be emulated using parameterized theories, where the
theory parameters represent the circuit inputs, but no similar mechanism is available for de�ning
the circuit outputs.

To address these issues, the AAMP-FV speci�cation is based on the notion of a \backplane"
rather than a hierarchy. The backplane consists of a theory SIG that de�nes the name and type
(but not the functional behavior) of all the registers, ip-ops, and connecting signal in the AAMP-
FV. In this way, signals can be referenced even though their functional behavior has not yet been
de�ned.

Each major functional block is described in its own theory. To connect the functional blocks to-
gether, three special purpose parameterized theories are de�ned, CONNECT, DFF, and DFFR. CONNECT
(Figure 5.2) has three parameters, a type and two signals of that type, and states axiomatically
that the second signal is equivalent to the �rst. DFF has the same parameters as CONNECT, but
states that the value of the second signal at time (t+1) is equivalent to the value of the �rst at time
t. DFF thus de�nes a D-type ip op, where the �rst signal is the D input and the second is the Q
output. The DFFR theory de�nes a resettable D-type ip op and adds parameters for a value to
which the ip op is reset and a reset signal.

In this way, the SIG theory serves as a \backplane", making the de�nitions of the signal available
wherever they are used in the microarchitecture speci�cation. CONNECT is used to de�ne a direct
connection between two signals, DFF is used to connect two signals through a ip-op, and DFFR is
used to connect two signals through a resettable ip-op.

Figure 5.3 shows the de�nition of the Next PC (next program counter) register. Immediately
following its functional speci�cation is the instantiation of theory PC that connects the Next PC

29

CONNECT [(IMPORTING AAMP_FV_basics)

sig_type : TYPE,

A : signal[sig_type],

B : signal[sig_type]

]: THEORY

BEGIN

t : VAR time;

CONNECT: AXIOM B(t) = A(t)

END CONNECT

Figure 5.2: PVS Speci�cation of CONNECT

Next_PC(t) : bvec[24] = IF LPC(t) THEN

V(t)^(23,0)

ELSE

CASES PQ(MC(t)) OF

PC : NxPC(t),

PCplus1 : NxPC(t),

PCplus2 : NxPC(t)

ELSE PC(t)

ENDCASES

ENDIF

PC: THEORY = DFFR[bvec[24],Next_PC,PC,bvec0[24],RST]

Figure 5.3: PVS Speci�cation of the Next PC Register

register to the PC register through a ip-op that can be cleared by the RST signal. The other
names in this speci�cation fragment, such as LPC, V, and MC are all signals named in SIG and
de�ned in other parts of the microarchitecture speci�cation.

Use of theories such as CONNECT, DFF, and DFFR reduced the complexity of the proof scripts
by making it simple to load the connections as auto-rewrites. For example, to cause the PC-Next PC

connection to be treated by PVS as an automatic rewrite rule during a proof, it is only necessary
to issue the prover command (auto-rewrite-theory "PC"). This makes the proof script more
readable and manageable for the engineer performing the proof.

Specifying the microarchitecture with a \backplane" reected the actual design of the AAMP-
FV, making construction of the formal model straight forward. As pointed out in Section 3,
speci�cation of the microarchitecture was completed in approximately 90 man hours. The functional
style also reduced the likelihood of introducing inconsistencies in the speci�cation. Although the

30

DFF and CONNECT theories are axiomatic, they are used in a controlled manner that minimizes
the potential for error.

The microarchitecture speci�cation of the AAMP-FV is very similar to what an HDL spec-
i�cation of the processor would look like. In large part, this is due to the language features of
PVS that map readily to similar HDL constructs. This has important bene�ts when working with
engineers unfamiliar with formal speci�cation languages, since they can read a PVS speci�cation
and understand what is being said without extensive training.

5.3 Formal Speci�cation of the Microcode

The microcode for the AAMP-FV was translated by hand into PVS. An example for the REFA
instruction is shown in Figure 5.4. While the PVS representation is not easily read (except by an
AAMP-FV microcode programmer), it has the advantage that it was generated from the original
microcode by a very straight forward process. In future projects, it would not be possible to build a
translator that would generate the PVS representation automatically from the original microcode.

31

ucode_REFA : THEORY

BEGIN

IMPORTING EP_basics

IMPORTING Put_Pull_ROM_basics

IMPORTING micro_macro_defns

%% Define the Entry Point

REFAep : AXIOM EP_OF(REFA) = EP_REFA;

%% Define the Entry Condition

PP_REFA: AXIOM PP_ROM(REFA) = Pullif_OClt2 %% IF(SV>1)DO

%% Define the Microcode

REFAinstrn: AXIOM uROM(EP_REFA) =

FeqR(%% F<-R

ReqSVminus1_0(%% R<-VM1:V

INC_PCandCFETCH(%% FCON+1

JMP(REFS1, default_minstrn)))) %% => REFS1

WITH [(DN) := QgetsF, %% Q<-F

(PP) := POP2] %% POP2

END ucode_REFA

Figure 5.4: PVS Speci�cation of the REFA Microcode

32

Chapter 6

Formal Veri�cation of the AAMP-FV

6.1 Overview

Section 2.6 discussed the kinds of theorems to be proved in verifying the microcode of a micro-
processor. In this section we describe the speci�c theorems proved about the AAMP-FV. Sec-
tions 6.2, 6.3, and 6.4 describe in detail what has been proven about the AAMP-FV microcode
using PVS.

6.1.1 Commutativity Theorems

Most of the e�ort spent proving the correctness of the AAMP-FV microcode focused on veri�cation
of the commutativity theorem (illustrated in Figure 6.1) relating the microarchitecture and macro-
architecture models described in Chapters 4 and 5. The proof of the microcode commutativity
theorem divides naturally into three parts.

Micro State

Abstraction Abstraction

s0

u -f1
t -f2

t - t -fn ��
��

��
��

��
��
�*

t

sN

- t - t - t -
sV

u

6
u
SV

6
Macro State

S0
u -

Next Macro State

Microcode StackAdjust

Figure 6.1: Overview of the Correctness Proof

The micro correctness proofs verify the correctness of the microcode at the microarchitecture
(register-transfer) level, showing that the microcode executing on the microarchitecture speci�ca-
tion satisfy several micro correctness lemmas describing how it changes the microarchitecture state.
These proofs correspond to the lower sequence of micro instruction steps from microstate s0 to sN
in Figure 6.1.

The macro lift proofs use these lemmas to show that the microcode correctly implements the

33

behavior speci�ed at the macroarchitecture level. This is done by showing that the e�ect of mapping
the initial microstate s0 into macrostate S0 via the Abstraction function and applying the next

macro state function results in the same macrostate as mapping microstate sN into macrostate
SV via the Abstraction function.

The micro steps from state sN to sV consist of the stack adjustment logic performed prior to each
instruction to ensure that the correct number of operands are in the stack cache and that there is
room in the stack cache for instruction results. Stack adjustments are not visible at the instruction
set level and thus have no e�ect on the macrostate. Proof of the correctness of the stack adjust
logic in support of the commutativity theorem only needs to be done once and involves showing
that both the microstates sN and sV map to the same macrostate SV via the Abstraction function.

6.1.2 Visibility Theorems

As described in Section 2.6, the visibility theorems de�ne another set of properties to be proven
about each instruction. The initial microstate s0 in Figure 6.1 is assumed to satisfy these conditions.
To achieve this, the visibility conditions must be shown to hold at processor initialization and at
the end of each instruction at time tV .

There are actually four visibility conditions to be shown for each instruction. The �rst requires
that the instruction entry conditions be met, i.e., that the stack cache contains su�cient operands
for the current instruction and that there is room in the stack cache for the instruction results. The
second mandates that the code word pointed to by the program counter is actually loaded into the
instruction register IR. The third ensures that the �rst line of microcode for the current instruction
is loaded into the microcode register MC. Finally, the last condition guarantees that an invariant
between the empty stack cache signal and a pointer SV into the stack cache is met. The visibility
conditions are discussed in more detail in the following sections.

6.1.3 Invariant Theorems

Only one kind of invariant property (Section 2.6) has been proved about the AAMP-FV microcode,
that the interrupt register correctly accumulates and remembers interrupts during instruction ex-
ecution (see Section 6.2.1.4). While there are other interesting invariant properties that could be
shown (e.g., that the overow line is not asserted during instruction execution), the focus of this ef-
fort has been on the commutativity and visibility theorems. Proofs of additional invariant theorems
may be undertaken in future e�orts.

6.2 The Micro Correctness Proofs

This section discusses the micro correctness proofs, corresponding to the sequence of micro instruc-
tion steps from microstate s0 to sN in Figure 6.1. For each instruction, the result of executing its
microcode is expressed as one or more lemmas, which are later used in the veri�cation of the com-
mutativity theorem. The proofs of these lemmas deal with data-dependent instruction execution
times, branches, and loops, e�ectively separating these details from the macro correctness proofs
and helping to compartmentalize the proofs, making them easier to manage. For engineers familiar
with the AAMP-FV, these correctness conditions are quite easy to understand and completion

34

of the micro correctness proofs provide a high degree of assurance that the microcode is indeed
correct.

Most of the AAMP-FV instructions have microcode that that is similar and can be veri�ed
by following a standard pattern. However, a few instructions have more complex microcode and
require more sophisticated proof strategies. For this reason, the discussion of the micro correctness
proofs is broken up into two parts, the proof of the standard AAMP-FV instructions and the proof
of complex AAMP-FV instructions.

6.2.1 Standard AAMP-FV Instructions

The REFA instruction discussed in Section 4.2.4 is used to illustrate the micro correctness proofs
for the standard AAMP-FV instructions. The micro correctness proofs for these instructions are
organized into separate PVS theories, with the REFA micro correct theory being typical. Using a
standard format for all instructions eased the creation of the micro correctness statement for each
new instruction and simpli�ed the macro correctness proofs.

6.2.1.1 The Micro Correctness Theory

Each micro correctness theory begins with the parameterization of the theory with the time t0 and
the assumptions the theory makes about that time, as shown below for REFA.

REFA_micro_correct[(IMPORTING time) t0: time]: THEORY

BEGIN

ASSUMING

IMPORTING correctness_predicates

assume_current_op: ASSUMPTION current_op(t0) = REFA

assume_visible: ASSUMPTION visible(t0)

assume_normal_operation: ASSUMPTION normal_operation(t0)

ENDASSUMING

Three distinct points in time are de�ned at the microarchitecture level for each instruction:
t0, tN, and tV, corresponding to the microstates s0, sN , and sV in Figure 6.1. The �rst of these,
t0, represents the time at which instruction execution begins and each micro correctness theory is
parameterized by this value. Time t0 is treated as a constant within the micro correctness theory,
but outside of this theory it can represent any time that satis�es the constraining assumptions. The
assumptions are used in proving the micro correctness lemmas, and PVS generates proof obligations
to show that each assumption holds whenever the micro correctness theory is instantiated.

The �rst assumption shown above asserts that the opcode at time t0 is REFA. The proof
obligation generated by this assumption is easily discharged at the next higher level in the proof
structure.

35

The second assumption, assume visible, brings in the visibility conditions discussed in Sec-
tion 6.1.2. Its de�nition is

visible(t): bool =

entry_conditions_met(t) and

code_word_fetched(t) and

instruction_loaded(t) and

stack_invariant(t)

The �rst predicate, entry conditions met, holds if the stack cache contains an appropriate
number of entries for the current instruction to execute. This is indicated by the microarchitecture
when the stack adjust line is not asserted, i.e., the micro architecture component ADJUST F is true.
It is de�ned as

entry_conditions_met(t): bool = ADJUST_F(t)

The code word fetched condition requires that the instruction register contains the word from
code memory pointed to by the program counter and is de�ned as

code_word_fetched(t): bool =

IR(t) = read(code, UM(t), wordPC(t), MEMORY(t))

The instruction loaded condition ensures that the microcode register (MC) contains the
microcode ROM entry pointed to by the entry point of the currently requested operation.

instruction_loaded(t): bool =

MC(t) = uROM(EP_OF(current_op(t)))

The last predicate in the visible assumption, stack invariant, speci�es an invariant between
the signal SKMT(t), which is true when the stack cache is empty, and the register SV, a pointer
into the stack cache. Since the value of SV is maintained by the microcode, the micro correctness
theory assumes that the previous instruction maintained this invariant.

The last assumption made by the micro correctness theory, normal operation, ensures that the
reset (RST) and end of built-in self test (ENDB) lines are not asserted during instruction execution.

normal_operation(t): bool =

stays_low(ENDB)(t,end_of_current_instruction(t)) AND

stays_low(RST)(t,end_of_current_instruction(t))

The normal operation assumption thus asserts that the ENDB (end of builtin self-test) and
RST (reset) signals stay low from time t0 to end of current instruction(t0), a function that
de�nes the time tV corresponding to micro state sV in Figure 2.1. Note that while the micro
correctness theory must make assumptions about the RST and ENDB lines, similar assumptions
are not needed to deal with interrupts since the AAMP-FV only processes interrupts at instruction
boundaries.

The next section of a micro correctness theory de�nes various points in time during the instruc-
tion execution. The uninterpreted function end of current microcode de�nes the time at which
the last line of microcode for the current instruction executes. Even though this function may be
data dependent, it is always computable based upon the state of the processor at time t0. In the

36

REFA example above it is de�ned to have a value of t0 + 1 at time t0. For notational convenience,
end of current microcode(t0) is aliased to TC.

REFA_TC: AXIOM

end_of_current_microcode(t0) = t0 + 1

TC: time = end_of_current_microcode(t0)

tC: VAR {t:time | t = TC}

TN: time = end_of_current_microcode(t0) + 1

tN: VAR {t:time | t = TN}

tR: VAR {t:time | t >= t0 and t <= end_of_current_microcode(t0)}

Time TN, corresponding to the microstate sN in Figure 2.1, is the time at which the instruction
speci�c microcode completes execution and the results are loaded into the state registers of the
AAMP-FV. For the REFA instruction, TN is equal to TC + 1. The variable tN is de�ned and used
throughout the speci�cation because it is helpful to use the correctness statements generated within
this theory at a higher level as auto-rewrites. De�ning tN to be a logical variable with only one
possible value (tN) facilitates this during the proofs. The variable tR is de�ned to make it more
convenient to de�ne properties which hold for the duration of the instruction.

The rest of the micro correctness theory states the correctness lemmas to be proved. For
example, the REFA SV correct lemma states that the stack occupancy when the REFA instruction
is complete will be one less than the occupancy at the beginning of instruction execution.

REFA_SV_correct: LEMMA

occupancy(tN) = occupancy(t0) - 1

The REFA STACK correct lemma states that the top element of the stack following the execution
of the REFA instruction will contain the word read from the memory address address formed from
the top two elements of the stack at the start of the instruction. The function stack(t)(n) returns
the nth element of the stack cache at time t.

REFA_STACK_correct: LEMMA

((stack(tN)(0) = XD)

WHERE

WA = (stack(t0)(1) o stack(t0)(0))^(23,0),

XD = read(t0)(WA))

The REFA UNUSED correct lemma de�nes what happens to stack cache elements not a�ected
by the execution of the REFA microcode. Note that the index j ranges from 2 to one less than the
occupancy of the stack cache at time t0. This is because the REFA instruction pops two words
o� the stack to create an address, then reads the word at that address and pushes it on the stack.
This lemma states that any elements of the stack cache at time t0, other than the top two words
used to construct the address, will be in the stack cache at time tN directly beneath the word read
from memory.

j: VAR {k: nat | k < occupancy(t0) and k > 1}

REFA_UNUSED_correct: LEMMA

stack(tN)(j-1) = stack(t0)(j)

37

Note that if the range of j exceeds its proper bounds, the error is caught during the proof of
lemma REFA UNUSED correct. However, if the range of j fails to completely cover the full range,
i.e., if it were speci�ed as k > 2 the lemma REFA UNUSED correct would still be correct. In such
cases, the error would not be caught until the macro lift proofs mapping the micro correctness
lemmas into the other overall proof structure were completed. In fact, setting the range of j
incorrectly was one of the more likely errors when creating the micro correctness lemmas. On at
least two occasions, the macro correctness proofs revealed errors in setting the range of j that had
not been discovered during the micro correctness proofs. This illustrates that while completion of
the micro correctness proofs provides a high level of con�dence in the microcode, completion of the
macro lift proofs serves to check on the su�ciency of the micro correctness lemmas.

The remaining micro correctness lemmas are stated as a conjunction of conditions that must
hold at completion of the instruction. For the REFA instruction, these consist of showing that
the program counter is incremented by one, that the TOS, PAGE, LENV, and MASK registers
are unchanged, that the processor remains in user mode, that memory is unchanged, and that the
interrupt register is not cleared during the course of the instruction.

REFA_conjunction: LEMMA

(PC(tN) = PC(t0) + 1) &

(TOSREG(tN) = TOSREG(t0)) &

(PAGE(tN) = PAGE(t0)) &

(LENV(tN) = LENV(t0)) &

(MASK(tN) = MASK(t0)) &

(UM(tN) = UM(t0)) &

(MEMORY(tN) = MEMORY(t0)) &

CLRI_accumulate(t0, TC)

These are speci�ed as a single conjunction to increase proof e�ciency. The proof of each micro
correctness lemma requires that the PVS prover perform a symbolic simulation of the microcode
using the microarchitecture model. By combining these into a single conjunction, PVS is able to uti-
lize its caching facility to perform the simulation once, dispatching multiple correctness statements
in parallel. This has a signi�cant impact on proof speed.

The conjunctive style shown above was adopted mid-way through the AAMP-FV project. How-
ever, this change required that the form of the proofs that depend on this theory had to be changed
as well. Rather than simply auto-rewriting the entire micro correctness theory, the conjunction
had to be brought into the sequent, attened, and each of the resulting propositions converted into
a rewrite rule. This is illustrative of how the development of e�cient proofs can cause unforeseen,
and unintuitive, changes in the speci�cations.

6.2.1.2 The Micro Correctness Proofs

The actual proofs of the micro correctness lemmas rely heavily on the automatic rewrite capabilities
of PVS. They typically involve performing auto-rewrites of all of the primary registers, wires, and
signal de�nitions (DFFs, DFFRs, and CONNECTs) in the design, auto-rewriting any applicable
bitvector rules, and performing an assert. This basic strategy is su�cient to dispatch most of the
micro correctness proofs for the standard instructions.

Of course, each instruction is di�erent and requires some some adjustment of the basic strategy.
It becomes obvious through experience which registers and wires need to be rewritten for di�erent

38

classes of instructions. For example, instructions which do not access memory (such as the ADD
instruction) do not need to have the theories associated with the main memory installed. There
is a trade-o�, however, between minimizing the number of automatic rewrites and maximizing the
reusability of the proof script.

More di�cult to anticipate are the case splits required in the proofs of di�erent instruction.
Often, it is not obvious what speci�c values a branch in the proof should be based upon until one
has reviewed a failed proof, so many of the variations on the basic proof script were developed
through trial and error. It would be di�cult to develop a single proof strategy that would work
well on all of the standard instructions.

6.2.1.3 Proofs of Visibility Properties

In order to ensure the proper setup for the next instruction, there are several properties, in addition
to the micro correctness lemmas, that must hold at the end of the current instruction. Most of these
relate to showing that the visibility assumption for the next instruction can be met, e.g., ensuring
that stack occupancy requirements are met and that the microcode is correctly loaded. These
functions are handled by the stack adjustment logic common to all instructions. The theory NEXT

micro correct is imported by the micro correctness theory for the current instruction. Dispatching
the type correctness conditions (TCC) generated by importing this theory guarantees that the
microcode for the current instructions satis�es the assumptions needed by the stack adjustment
logic. In this way, the veri�cation of the microcode for the current instruction and the veri�cation of
the stack adjustment logic can be combined to complete the bottom line of the commuting diagram
in Figure 6.1 corresponding to states s0 to sV .

6.2.1.4 Proofs of Invariant Properties

Some properties of the AAMP-FV are best proven entirely at the microarchitecture level, without
trying to relate them to the macroarchitecture speci�cation. For example, the AAMP-FV captures
interrupts raised while an instruction executes and holds them in the interrupt register pending the
end of the current instruction. Precisely de�ning this behavior is di�cult in the macro architecture
since it has no real notion of time, just the state of the processor and memory before and after
the instruction. To ensure that interrupts are correctly handled, the micro correctness theory
imports another theory, INT REG micro correct, that states that the interrupt register correctly
accumulates and remembers new interrupts. At the macro architecture level, this is weakened to
state that under normal operation (i.e., ENDB and RST remain low) the interrupt register remains
unchanged if no interrupts are raised during the instruction. This invariant has been proven to
hold during the instruction speci�c microcode of each instruction. 1 The proof that it holds for
the stack adjust logic has not been completed.

6.2.2 The Complex AAMP-FV Instructions

Some of the AAMP-FV instructions, such as the CALL and IMPY instructions, are su�ciently
complex that the strategy described above was insu�cient for the veri�cation of their microcode.
To deal with these instructions, the speci�cation of the micro correctness lemmas was split into
several theories and more complex strategies were used in their proof.

1With the exception of the CLRI instruction, which clears the interrupt register.

39

The �rst strategy consisted of dividing the microcode up into sections that perform some well
de�ned function, then \gluing" the veri�cation of these sections together, much as was done in
the REFA instruction when combining the veri�cation of the REFA speci�c microcode to that of
the stack adjust logic. The second strategy consisted of proving key properties at the lowest level,
then using those results to discharge more general proof obligations at the next level up. A third
strategy, used in the CALL instruction, allowed the prover to step forward through the symbolic
execution of the microcode one cycle at a time.

6.2.2.1 The CALL Instruction

The AAMP-FV CALL instruction transfers execution control to a called procedure and provides
for the passage of parameters, allocation of dynamic storage on the stack for the procedure's local
variables, and the creation of the stack mark. As such, it is one of the more complex AAMP-FV
instructions.

Its microcode is divided into three parts identi�ed as the setup, adjust, and main segments.
The setup segment performs the initialization of several registers in preparation for execution of
the rest of the instruction. The adjust segment ensures that the stack cache is empty (for e�ciency,
this is done by a special segment of microcode rather than by the normal stack adjust logic). The
main segment then performs the real work of the CALL instruction by writing the stack mark,
saving the current processor state, and performing a context switch.

Organizing the correctness theories for the CALL instruction around this structure makes it
possible to treat the microcode as three simple segments with minimal branching. This simpli�es
the symbolic simulation of the microcode by reducing the number and complexity of the case splits
that need to be introduced during the proof.

It was also useful to separate the veri�cation of each segment of microcode from the representa-
tion of the results used at the next higher level. At the lower levels, the proofs could be made more
e�cient by stating the properties to proven in the conjunctive form discussed in Section 6.2.1.1,
thus exploiting the caching capabilities of PVS to symbolically execute the microcode once for all
properties rather than once for each property to be proven. At the next higher level, these same
properties were restated as individual lemmas suitable for use as automatic rewrite rules. These
lemmas were easily discharged using the conjunctive form proven at the next lower level.

These two strategies, breaking the microcode up into three segments and reformulating the
correctness properties to support the next higher layer, resulted in the proof structure shown in
Figure 6.2. The predicate theories are where the di�cult part of the proofs, i.e., the symbolic
execution exploiting the caching capabilities of PVS, are located. The correct theories are cos-
metic restatements of the predicate theories expressing the properties as lemmas better suited for
rewriting.

For example, the CALL setup predicate, CALL adjust predicate, and CALL main predicate

theories are where most of the work in proving the CALL micro correctness lemmas occur. Each
segment of microcode is symbolically executed once in these three theories and used to prove the
conjunction of the micro correctness lemmas for each segment. Their parent theories, CALL setup

correct, CALL adjust correct, and CALL main correct, break these statements into several lem-
mas suited for use as automated rewrite rules. The CALL micro predicate theory combines these
three theories together to create the \end-to-end" version of the micro correctness lemmas for

40

CALL micro correct

CALL micro predicate

CALL adjust correct

CALL adjust predicate

CALL setup correct

CALL setup predicate

CALL main correct

CALL main predicate

Figure 6.2: CALL Proof Structure

the CALL instruction. Finally, the CALL micro correct theory restates these results in the form
expected by the macro lift proof of the CALL instruction.

Another technique used in the veri�cation of the CALL microcode was to force the PVS prover
to evaluate the microarchitecture state by stepping forward one cycle at a time. This had two main
advantages. First, it improved proof e�ciency by allowing the proof to delay case splits, thereby
making better use of PVS's caching facilities. Second, it made it easier for a human to monitor the
progress of the proof.

Normally, the PVS prover attempts to prove a microarchitecture property postulated at time T
by recursively rewriting it as a property postulated at time T - 1 until the start of the instruction
at time T0 is reached. PVS then works its way forward in time, reducing expressions whenever
possible. This is a natural consequence of de�ning the microarchitecture state at time t + 1 as a
function of its state at time t.

While this technique worked well enough for the standard instructions, the microcode for the
CALL instruction is complex enough that the expressions generated while recursing to time T0

became di�cult to manage. Worse, any errors in the speci�cation ampli�ed the problem, usually
without providing any clues of what the error was.

To address this, a method was developed to force the PVS prover to start with the micro-
processor state at time t0 and step forward, computing the new microprocessor state at each micro
cycle until the desired time was reached. This strategy also provided a simple mechanism to let
the veri�cation engineer examine the micro state at each time. This made it much simpler to spot
problems caused by errors in the speci�cation.

To perform micro stepping, the step function was de�ned as shown in Figure 6.3. The step

function takes two arguments, a starting time t and a completion time TN and returns yet another
function, step(t,TN). This function takes two predicates over the micro state, A, de�ning a predi-
cate that is to hold throughout instruction, and P, de�ning a predicate that is to hold at the end
of the instruction, and returns a boolean value.

When using the step function in a proof, step is expanded at time t to expose its de�nition.
Providing t is less than TN, The PVS prover evaluates A at time t. Assuming A is some function

41

step: THEORY

BEGIN

IMPORTING micro_state

B : VAR bool

A,P : VAR [time -> bool]

t,t0,tR,TN : VAR time

S : VAR micro_state

split(S,B) : bool = B

step(t,TN)(A,P): RECURSIVE bool =

IF (t >= TN)

THEN P(TN)

ELSE A(t) & split(uState(t),step(t+1,TN)(A,P))

ENDIF

MEASURE TN - t

step_accumulate: LEMMA (t0 <= tR) & (tR < TN) & step(t0,TN)(A,P) => A(tR)

step_step : LEMMA (t<TN) => step(t,TN)(A,P) = step(t+1,TN)(A,P)

step_induct : LEMMA step(TN - t,TN)(A,P) => P(TN)

step_rewrite: LEMMA step(t0,TN)(A,P) => P(TN)

END step

Figure 6.3: Step Function

of the micro state at time t, this forces the PVS prover to evaluate the micro state at time t,
and in the process, place the micro state at time t in its cache. If A(t) holds, the prover step

proceeds to evaluate split. The split function is actually dummy function. Its sole purpose is
to allow the proof engineer to examine a representation of the micro state at time t, uState(t).
If the micro state appears reasonable, the proof continues by expanding step at time t + 1. This
process continues until t is equal to or greater than TN, at which time the correctness state P is
evaluated at time TN. The step accumulate and step rewrite lemmas are useful in establishing
the desired �nal results.

As mentioned earlier, this approach has two advantages. First, the veri�cation engineer can
monitor the progress of the proof by examining uState at each step. The function uState can
be de�ned to be whatever representation of the microarchitecture state is the most helpful. This
makes it much simpler to detect when a proof has gone astray due to a speci�cation error. Second,
the PVS prover caches the intermediate results as the proof steps forward. By delaying case splits
in the proof as long as possible, PVS can use the cached results when evaluating new instances of
the micro state.

42

6.3 Proof of the Stack Adjustment Logic

From time tN to tV , a common piece of microcode, the stack adjustment routine is executing. This
routine ensures that the requisite number of arguments are read into the stack cache in preparation
for the next instruction or that su�cient words are written out to memory to make room for the
computed result. Since this microcode is common to all instructions, its correctness only needed
to be proven once. Combining the proof of the micro correctness conditions with the proof of the
stack adjustment routine completes the lower arm of the commuting diagram from microstate s0
to sV in Figure 2.1. The stack adjustment logic was veri�ed by SRI.

6.4 The Macro Lift Proofs

Once the detailed behavior of the microcode is veri�ed at the microarchitecture level, the overall
proof of correctness is completed by the macro lift proof that \lifts" the micro correctness conditions
to the macroarchitecture level. In Figure 6.1 this corresponds to the arms mapping microstates
s0 and sN into macrostates S0 and SV via the Abstraction function and the next macro state

function that transforms macrostate S0 into macrostate SV .

6.4.1 The Abstraction Function

The abstraction function of Figure 6.1 is de�ned in theory ABS shown in Figure 6.4. This function
constructs the macroarchitecture state seen by the application programmer from the microarchi-
tecture state. For the most part, this simply consists of equating, or \lifting", components directly
from the microarchitecture state to the macroarchitecture level. For example, ABSpc simply returns
the value of the microarchitecture program counter register at time t.

One exception is the top of stack, or TOS, register seen by the application programmer. The
microarchitecture TOS register actually points to the topmost (i.e., smallest address) word of the
process stack maintained in memory, while the application programmer sees the \logical" TOS
created by including the number of words maintained in the stack cache to this address. As a result,
the logical TOS, ABStos, is de�ned to the microarchitecture TOS minus the current occupancy of
the stack cache (recall that the process stack grows towards decreasing memory addresses).

A more complex exception is the application programmer's view of memory, which is a blending
of actual memory and the stack cache. The application programmer's view, ABSmem, returns the
original memory function de�ned in Figure 4.4, except that it substitutes the contents of the stack
cache for words in memory locations overlaid by the stack cache. To obtain the correct index into
the stack cache, ABSmem converts an address addr into an o�set from the top of the stack cache
and subtracts that o�set from the occupancy of the stack cache.

Finally, the function ABS uses the individually de�ned components of the abstraction function
to create the PVS record representing the macrostate.

6.4.2 The Macro Correctness Statement

For each instruction, a lemma is created in PVS de�ning what it means for that instruction to be
\correct". The statement of correctness for the REFA instruction is given in lemma REFA macro

correct in Figure 6.5. Here, t0 is the time at which the instruction begins and TN the time at

43

ABS: THEORY

BEGIN

IMPORTING AAMP_FV_microarchitecture

IMPORTING macro_state

t: VAR time

%---

% Lift the internal registers and flags to the macro level.

%---

ABSpagereg(t) : register = PAGE(t)

ABStos(t) : register = TOSREG(t) - occupancy(t)

ABSpc(t) : address = PC(t)

ABSlenv(t) : register = LENV(t)

ABSum(t) : bool = UM(t)

ABSmask(t) : byte = MASK(t)

ABSintreg(t) : byte = INT_REG(t)

%---

% Lift external memory and the stack cache to the macro level.

%---

ABSmem(t)(cd, ue: bool)(addr: address): word =

IF in_stack_cache_area(t,cd,ue,addr) THEN

stack(t)(occupancy(t) - offset(t,addr))

ELSE

MEMORY(t)(cd,ue)(addr)

ENDIF

%---

% ABS returns the macrostate as a function of the microstate

% at time t, "lifting" the visible microstate to the macro level.

%---

ABS(t): macro_state = (# mem := ABSmem(t),

tos := ABStos(t),

pc := ABSpc(t),

lenv := ABSlenv(t),

um := ABSum(t),

mask := ABSmask(t),

intreg := ABSintreg(t) #)

...

END ABS

Figure 6.4: Abstraction Function

which the instruction ends. ABS(t0) and ABS(TN) correspond to the macrostates at the start and
completion of the REFA instruction, respectively. This lemma states that if the opcode at time t0
is REFA and the macro restrictions apply, then the macrostate created by applying the abstraction
function ABS to the microstate at time TN is the same as that obtained by applying the next macro

state function to the macrostate created by applying the abstraction function to the micro state

44

REFA_macro_restrictions : AXIOM

current_opcode(ABS(t0)) = REFA =>

macro_restrictions_apply(ABS(t0)) =

(not_stack_cache_address(ABS(t0))(WA) &

pc_not_in_cache_region(t0))

WHERE WA = (top(ABS(t0),1) o top(ABS(t0),0))^(23,0)

REFA_macro_correct : LEMMA

current_opcode(ABS(t0)) = REFA &

macro_restrictions_apply(ABS(t0)) =>

next_macro_state(ABS(t0)) = ABS(TN)

Figure 6.5: PVS Correctness Statement for the REFA Instruction

at time t0. The next macro state function was discussed in Section 4.2.4 and is given for the
REFA instruction in Figure 4.6 on page 23.

The macro restrictions apply predicate de�nes the conditions that must be met for the
instruction to be well de�ned under the abstraction we have de�ned. For most instructions, this
simply consists of the restriction pc not in cache region, which is true except when the data
and code regions overlap in memory. If the data and code regions overlap, then the restriction
also requires that the memory location addressed by the program counter not lie within the stack
cache region. Instructions that directly reference memory, such as the REF and ASN instructions,
need additional restrictions. For example, they require that the memory word(s) being referenced
cannot lie in the vicinity of the stack cache. The REFA macro restrictions axiom assigns the
macro restrictions apply predicate this interpretation when the current instruction is REFA.
For instructions such as REF24, that calculate the address from bytes drawn form the instruction
stream, it is further necessary to require that the instruction bytes do not overlap with the scache
region if the code and data regions overlap in memory.

The REFA macro restrictions axiom repeats the constraints included in the de�nition of the
REFA instruction given in Figure 4.6. When the macroarchitecture was speci�ed, it wasn't apparent
that a separate speci�cation of macro restrictions apply would be needed during the proofs.
In future e�orts, it would make more sense to specify macro restrictions apply once for each
instruction and incorporate this de�nition into the macro architecture speci�cation.

6.4.3 The Macro Lift Proofs

The actual macro lift proofs all follow the same overall pattern, yet di�er enough that each requires
individual attention. The proof for the REFA instruction is typical. It consists of 66 PVS prover
commands.

The �rst part of the proof consists of 36 prover commands. These instruct PVS to generate
automatic rewrite rules from several PVS theories such as the bit vectors, pull in the macroarchi-
tecture de�nition of the REFA instruction, pull in the microarchitecture correctness lemmas for
the REFA instruction, pull in the abstraction function, and then expand the correctness statement
shown in Figure 6.5 using all of the above as rewrite rules. At this point, PVS is able to conclude

45

through auto-rewrites that the correctness statement holds for all components of the macrostate
except for memory.

As discussed in Section 4.4, memory consists of up to four memory spaces indexed by the
code/data and user/exec lines. The proof �rst splits on whether the memory space is for code or
data. Since the REFA instruction does not change code memory, PVS is able to show that the
correctness condition holds for this branch with a single ASSERT prover command. Next, the proof
splits on whether the remaining data memory space being considered contains the process stack
or not. Since the data memory space that does not contain the process stack is not changed by
the REFA instruction, PVS is able to show that the correctness condition holds via application of
several ASSERT and GROUND commands.

The proof that the correctness condition holds for the memory space containing the process
stack is the most complex portion of the proof and consists of 22 prover commands. These split the
proof into three branches, �rst considering the portion of the memory space lying above (i.e., at a
lower addresses) than the new logical top (TOS) of the process stack, the speci�c word pointed to
by the new TOS value (which contains the word read from memory and placed on the top of the
stack), and the unchanged portion of memory lying below (i.e., at higher addresses) than the new
logical top of stack.

Execution of the REFA macro correctness proof requires approximately 618 seconds (run time)
on a SPARC 20 workstation.

46

Chapter 7

Lessons Learned

Many insights have been gained during the AAMP5 and AAMP-FV projects. This chapter discusses
some of the more important lessons.

7.1 Technology Transfer

Learning how to specify and verify formally the AAMP5 and AAMP-FV has been a long and
challenging process. The paradigm followed on both projects has been for SRI to develop the
initial approach on a few examples, then have Collins apply it to several examples, re�ning and
generalizing the approach. Throughout the project, things that appeared overwhelming at the start
were eventually mastered and reduced to routine, repeatable steps. These gains were achieved by
1) direct reuse of earlier speci�cations, 2) creating examples of how best to specify in PVS features
of the AAMP family, and 3) consolidating in the same individuals an understanding of both the
AAMP family and the expertise of how to use PVS.

An example of the direct reuse of earlier speci�cations is the bit vectors library developed
during the AAMP5 project. This library was used without signi�cant modi�cation on the AAMP-
FV project and greatly reduced the time needed to create the speci�cations of the micro and macro
architectures. While doing the proofs it became clear that the library needed to be supplemented
with a large number of lemmas that could be invoked as rewrite rules (Section 7.3). This points
out that even established libraries will need to be continuously enhanced.

A good example of learning of how best to specify in PVS features of the AAMP family is
provided by the speci�cation of the AAMP-FV instruction set. In specifying the AAMP5 instruction
set, a constructive style of speci�cation, in which each instruction was speci�ed by stating a function
that directly transformed the macro state, was originally chosen. Later, it was recognized that a
more descriptive style, in which the e�ect of each instruction was described by giving the macro
state before and after the instruction, more in the form of pre and post conditions, was more useful,
easier to write, and simpler to review [27, 37, 36]. Changing to the more descriptive style played a
major role in reducing the cost of specifying the AAMP-FV instruction set. As a result, specifying
each instruction at the macroarchitecture level is now quite routine, usually requiring less than an
hour.

The most dramatic gains in e�ciency were achieved by consolidating in the same individuals
an understanding of both the AAMP family and PVS. For example, creating the AAMP5 mi-

47

croarchitecture speci�cation took over 1,000 man hours to complete, while creating the AAMP-FV
microarchitecture speci�cation took less than 120 hours. This occurred because many of the de-
tails of how to specify the architecture were well understood from the AAMP5 project and the
AAMP-FV microarchitecture expert was able to write similar speci�cations for the AAMP-FV.

Much less experience with doing proofs of correctness had been transferred to Collins during
the AAMP5 project. As a result, a signi�cant portion of the AAMP-FV project was involved
with mastering this technology and re�ning it so that it could be repeated consistently. While
there are still improvements that can be made, for many instructions, this process has also become
routine. Fifty-four of the AAMP-FV's 80 instructions have been formally veri�ed, at an average
cost of about 38 hours per instruction. These proofs are similar in that they based on a symbolic
execution of the the microcode. On future e�orts, we believe this cost could be cut in half because
the proof method is now better understood.

Many of the remaining 26 AAMP-FV instructions consist of instructions such as multiply,
divide, shift, call, and return that are implemented with considerably more complex microcode.
Simple symbolic execution of the microcode fails here because the expressions generated during the
proof become too large. As a result, more e�cient approaches had to be developed. For example,
proof of the multiply and divide instructions are based on identi�cation of a loop invariant that
holds as each microinstruction is executed and that can be used in a proof by induction. At this
time, examples of how to perform these proofs have been developed by SRI, but these methods
have not yet been widely applied and re�ned by Collins.

In summary, the role of SRI has been to develop the �rst, depth-�rst examples, while Collins
performs the breadth-�rst application and generalization of those examples. This experience is
transferred as reusable libraries, examples tailored to the AAMP family, and consolidation of both
AAMP domain knowledge and PVS expertise in the same individuals. Costs during development
of these methods are quite high, but drop signi�cantly, even by an order of magnitude, as the
technology is mastered. At the current time, speci�cation of the macro and micro architectures is
almost completely performed by Collins, proof of the more routine instructions is well understood,
and techniques to prove the more complex instructions are being transferred to Collins.

7.2 Development of Domain Speci�c Libraries

Although one of the contributions of the AAMP5 project was the development of an extensive
library specifying the properties of bit vectors (i.e., sequences of bits such as bytes and words),
manipulation of bit vectors proved to be a constant challenge while doing the AAMP-FV proofs.
In retrospect, this shouldn't have been surprising. Most of the AAMP5 project, particularly for
Collins, focused on speci�cation of the micro and macroarchitectures. Consequently, while the
the bit vector library developed on the AAMP5 project worked admirably for speci�cation of the
AAMP-FV, more work had to be done to use it for veri�cation of the AAMP-FV microcode. Most
of this consisted of the development of lemmas about the bit vectors that can that can be used as
automatic rewrite rules. Also, SRI has incorporated many of the key properties of bit vectors in
decision procedures in PVS.

While considerable progress has been made in extending the bit vector library, more work still
needs to be done. It is not yet clear that the best model for the bit vectors has been chosen, that
the best set of operations for constructing and destructing bit vectors have been de�ned, and that
the best set of rewrite rules have been developed. Precisely how decision procedures for bit vectors

48

should be incorporated into PVS and how they should be supplemented with rewrite rules also
needs more attention.

7.3 Proof Robustness

One of the main problems encountered during the AAMP-FV project was that proofs completed
during the earlier part of the project would break as the speci�cations were changed to complete
proofs encountered later in the project. Usually, this occurred as proofs uncovered defects in the
speci�cation, additional proof obligations are identi�ed, or required changes in the speci�cation
to facilitate the proof. For example, midway through the AAMP-FV project, we realized that
the memory model, which was parameterized with whether the code/data and user/exec lines
were used to partition memory, could be generalized to the unparameterized version discussed in
Section 4.1.1. This allowed us to verify the AAMP-FV microcode regardless of how memory was
con�gured, reducing the number of proofs by a factor of four. However, it also required considerable
e�ort to go back and generalize the proofs already completed using the old memory model.

In other cases, proofs would be encountered that could be simpli�ed by making small changes
to the speci�cation, but these changes would break existing proofs. Less frequently, actual errors in
the PVS speci�cations would be found in later proofs. On a few occasions, upgrades to PVS broke
existing proofs. All of this points to the need to automate the proof process as much as possible
on large projects. This is particularly true of industrial projects, where constant change is the rule
rather than the exception. Two approaches suggest themselves, designing proofs to be as robust as
possible and increasing the amount of automation PVS can bring to bear on a problem.

Designing proofs to be a robust is a topic in itself worthy of further work. However, a few
guidelines have surfaced during the AAMP-FV project. Automation is usually desirable because it
makes a proof less sensitive to minor changes in the speci�cations. For example, one of the most
useful techniques used on the AAMP5 and and AAMP-FV projects was to develop rewrite rules
that exploit PVS's rewriting capabilities to automate as much of the proof as possible.

There are also a variety of heuristics that can be used to make proofs less fragile. Generally,
the less application speci�c information provided in a proof, the less fragile it will be. For example,
a ground command is generally more robust than performing a case split (which requires identi-
�cation of the speci�c predicate to split on) followed by assert commands. However, the latter is
often more e�cient and may even be necessary to complete a long proof.

Using care in how application speci�c information is used can also make a proof more robust. For
example, when phrasing a case split, the most obvious choice, based on just looking at the sequent,
may be more fragile than another form more closely tied to the actual problem. For example, in
the macro lift proofs, case splits could often be stated in terms of either the microarchitecture or
the macroarchitecture, but stating them from the macroarchitecture view made them less sensitive
to changes to the microarchitecture speci�cation. This was particularly true if automated rewrite
rules immediately rewrote the case split predicates in terms of the microarchitecture. Since the
macroarchitecture speci�cation was less likely to change than the microarchitecture speci�cation,
this resulted in more robust proofs.

Another guideline is to avoid the use of speci�c formula numbers in a proof (e.g., assert -3),
as these identi�ers often change. Forms such as assert - or assert * are more robust.

The use of parameterized theories often made the proofs more di�cult than necessary, largely
because of the need to instantiate the parameters with speci�c values during the proof process. On

49

several occasions, we replaced parameterized theories with unparameterized versions after dealing
with the consequences while doing proofs.

The other approach to increasing the robustness of proofs would be to enhance PVS to bring
more automation to bear on a problem. The ground command mentioned earlier is an example
of a powerful PVS command that improves the robustness of a proof, though often at the cost of
additional CPU time.

A facility to tag antecedent, consequent, and hidden formulae would also be helpful, allowing
one to write prover commands of the form assert tag, where tag is a name earlier associated with
the formula of interest. In particular, it would be helpful to tag formulas with names at the time
there are hidden so that they can later be revealed using that tag. One of the most fragile parts of
the macro lift proofs was a lemma that was introduced early in the proof, then hidden so that it
would not be a�ected by automatic rewrite rules, then revealed later in the proof. Since revealing
it required that its position among the hidden rules be given explicitly, the reveal statement was
a frequent source of trouble.

One thing that will help greatly is the introduction of more speed. Some of the micro correctness
proofs for the AAMP-FV take more than a day to complete on a Sparc 20 workstation, and
correcting such proofs due to minor changes to the speci�cations is a frustrating task. An order of
magnitude improvement in performance would go a long ways towards mitigating this. This is not
as outrageous as it might sound: many of the proofs completed on the AAMP-FV probably could
not have been done on the technology available at the start of the AAMP5 project. While more
speed will not actually make proofs more robust, it will mitigate the consequences of fragility.

7.4 Exploiting Modularity

PVS supports modularity through constructs such as theories, parameterization of theories, im-
porting (making a theory visible), and exporting (hiding parts of a theory). In addition, PVS also
provides facilities for �les, which hold one or more theories, and libraries, which are similar to �le
directories. Breaking the AAMP5 and AAMP-FV speci�cations down into many small, logically
related theories was a great help in organizing and structuring these large speci�cations. If only to
minimize the amount of typechecking that must be redone when modifying a speci�cation, careful
structuring of a speci�cation is worth the e�ort invested.

Considerable work has been done by the software community to develop heuristics that maximize
cohesion, or the degree to which the constructs in a module are related, and to minimize coupling,
the degree to which modules depend on each other. Besides producing well organized speci�cations,
this places together portions of the speci�cation that are likely to change together and minimizes
the extent to which changes a�ect other modules.

The AAMP5 and AAMP-FV projects were both unusual in that they had stable informal
speci�cations from which the formal speci�cations were developed. Even so, change caused by errors
found in the speci�cation and to facilitate the proofs became one of the largest costs associated
with the project (Section 7.3). In most industrial applications, constant change is the norm rather
than the exception. This suggests that better techniques for managing and mitigating the e�ect
of change need to be incorporated into tools such as PVS if they are to used in parallel with the
development of industrial systems. As with engineering proofs for robustness, this can be achieved
both by structuring theories to be robust in the face of change and by enhancing PVS.

50

A speci�cation can be made more robust by using interfaces as �rewalls. All the de�nitions
that other theories can reference are placed on the interface, while supporting de�nitions are encap-
sulated or hidden behind the interface. By encapsulating de�nitions that are likely to change, the
e�ect of change can be mitigated. Interfaces can be established around a single theory or a group
of theories. In a system such as PVS, where one wants to reason formally about a speci�cation, it
is necessary to place key properties on the interface as well as type de�nitions. For example, one
might want to place on the interface certain lemmas that can be invoked during the proof process,
but hide behind the interface a constructive speci�cation that exhibits these properties.

This sort of interface was placed around the bit vectors library during development of the
AAMP5 and AAMP-FV project. As lemmas were developed that could be used as rewrite rules
for the bit vectors, they were added to a \shell" of theories sitting directly above the bit vectors.
Eventually, they became complete enough that the original constructive speci�cations were no
longer needed for either the speci�cations or the proofs. However, the constructive speci�cation
was still used to prove the lemmas, thereby establishing their consistency. Later, a fundamental
change to the constructive speci�cation was proposed. Researchers at NASA Langley were able to
implement this change in a few days and incorporating it into the AAMP-FV speci�cation merely
required proving that the lemmas on the interface still held.

This interface was enforced on the AAMP-FV project by convention. The actual mechanism for
enforcing such interfaces in PVS is the EXPORTING clause, which exports from a theory names that
are to be made available to the rest of the context. The EXPORTING clause was not used on either
the AAMP5 or AAMP-FV project, in part because the PVS Reference Manual discourages its use.
However, our experiences suggest that more care needs to be given to mitigating the e�ect of change
in large veri�cation e�orts. Further research may suggest the addition of other mechanisms than
just the EXPORTING clause.

There are also enhancements to PVS that would help to manage change. Currently, a change
to any theory requires all theories that import that theory be retypechecked and their proofs rerun,
whether they are a�ected by the change or not. A typechecker that only rechecked those portions of
the speci�cation a�ected by a change could greatly reduce the amount of time spent retypechecking
and rerunning proofs. If would also be helpful to be able to determine the scope of the theories
a�ected by a change before actually making the change.

It is likely that additional constructs to help minimize the impact of change will need to be
added to PVS. For example, the library feature was recently added to PVS that can be used to
group theories into libraries that are reasonably stable, but additional documentation is needed on
how to use this feature.

A number of heuristics for determining the quality of software interfaces have been developed
over the years. Embley and Wood�eld have published a method for quanti�ably assessing the
quality of the cohesion exhibited by an Ada package [15]. Similar concepts could be developed for
speci�cations written in PVS. Given such heuristics, it is not di�cult to envision the addition of
automated design critics to PVS that could automatically ag poor structuring choices.

7.5 Support for Product Families

Formal speci�cation and veri�cation is an expensive process, making it important to amortize its
cost over several projects. One way to do this is to develop reusable libraries such as the bit
vectors. Another is to scavenge portions of one speci�cation that can be copied, modi�ed, and used

51

in another application. Portions of the AAMP-FV speci�cation were pro�tably scavenged from the
AAMP5 project.

However, if it is known from the outset that a family of related products is going to be developed
it makes sense to plan for the reuse of speci�cations and proofs in a more systematic manner,
commonly referred to as domain, or product family, engineering. In this approach, a core set of
common features are developed for use by all members of the product family. Members of the
product family are then instantiated by supplementing this core speci�cation with details speci�c
to that member. As members are created, those features common to several variants are generalized
and folded back into the main, or domain de�nition.

Domain engineering is closely related to modularization of speci�cations (Section 7.4) since one
is concerned with identi�cation of commonalities and di�erences between members of the product
family. Portions of the speci�cation known to be stable and common are incorporated into the
core of the domain de�nition, while those likely to change are placed in variant de�nitions. In this
respect, PVS already contains many of the speci�cation constructs necessary to support a product
family. However, it is not clear that all the features needed to support reuse of proofs exist. For
example, in the AAMP-FV project all the macro lift proofs were variations of the same basic proof
structure. Yet is was impractical to specify this structure once and instantiate it with the details
needed for each distinct instruction.

Creating a domain de�nition is obviously more di�cult than specifying a single member of
the family and would not have been appropriate for exploratory projects such as the AAMP5 or
the AAMP-FV. However, as the technology matures from exploratory to commercial application,
techniques for the systematic, planned reuse of speci�cations and proofs will become essential.

7.6 Importance of the User Interface

Another lesson that was not fully appreciated prior to the AAMP-FV project was the importance
of the user interface. During the AAMP5 project, SRI added to PVS the ability to graphically
display the import chain for a family of theories and the tree structure of a proof. Displaying the
import chain for the AAMP-FV speci�cations immediately pointed out unnecessary and undesirable
imports that had gone completely unnoticed. In the same way that being handed a map changes
one's perception of the forest, it brought out patterns that had not been seen when looking at the
speci�cations a theory at a time.

The importance of being able to visualize the tree structure of a proof was dramatically demon-
strated while completing the macro lift proofs. Once this facility was provided, it quickly became
the norm to display the proof tree adjacent to the PVS prover window. Midway through the
project, several very long proofs (taking over a day to execute) were being developed when a bug
was uncovered in the software displaying the proof tree. After a week of e�ort, it became apparent
that the proof was too di�cult to understand without the graphic display of the proof tree. The bug
was reported to SRI and several similar proofs that did not invoke the bug were completed. Later,
when the correction from SRI was installed, the proof of the o�ending instruction was completed
in a few hours. In short, the ability to visualize the overall structure of the proof and one's position
in it played an essential role in managing the proof.

As larger proofs and speci�cation are undertaken, the need for interfaces that assist the user in
understanding their structure and navigating within them will continue to grow. Even now, tools
that made it easier to visualize the overall AAMP-FV speci�cation, navigate through it, zoom in on

52

portions of interest, and better anticipate the e�ect of changes would be very helpful. Undoubtedly,
there are valuable improvements to the user interface that haven't even been envisioned.

7.7 What Needs to be Proven?

Most formal veri�cation projects have been performed in the context of research or exploratory
e�orts. Exploiting this technology for commercial use will force it to move closer to an engineering
discipline. However, an important aspect of an engineering discipline is that solutions must be
cost-e�ective [32]. This tension between research and engineering manifested itself during the
AAMP-FV project in the form of a simple question: What needs to be proven?

For microprocessor veri�cation, one end of the spectrum requires a complete proof that the
transistors correctly implement each instruction. While an exciting prospect, this approach was
not chosen for the AAMP-FV simply because su�cient funding didn't exist. Previous experience
building members of the AAMP family had shown that the microcode is the most likely source
of error. For this reason, both the AAMP5 and the AAMP-FV projects focused on microcode
veri�cation.

Besides providing a very high level of assurance in the correctness of the microcode, this had
many indirect bene�ts. Since veri�cation of the microcode is based of symbolic execution of it
on a speci�cation of the microarchitecture, it was necessary to specify the microarchitecture for-
mally. This process, along with proof of the microcode, provided a very detailed review of the
microarchitecture that that was likely, if not guaranteed, to �nd errors in its design.

As the project evolved, it became clear that the hardware engineers gained the greatest assurance
from completion of the micro correctness proofs, and were not very concerned with the macro lift
proofs. Yet on several occasions, completion of the macro lift proofs pointed out pieces of the
microcode that had not been veri�ed. For example, a subtyping error twice caused the micro
correctness proof to overlook the correctness of a word in the process stack. Nothing was actually
wrong with the microcode, the proof just wasn't completed.

At the same time, completing the macro-lift proofs provided an important validation of the
instruction set, or macro architecture, speci�cation. More importantly, completion of the proofs
forced us to model several subtleties that had been omitted from the original speci�cation. To
create this speci�cation, both the micro correctness and macro lift proofs were essential.

But what if time or money doesn't exist to complete every proof? Is there value in only
completing some of them? One of the authors is now using PVS routinely to execute microcode
symbolically on his current project. This gives him much greater con�dence in the correctness of
the microcode, without incurring the cost of full formal veri�cation early in the project. While
these partial proofs may be extended to full proofs of correctness before the project ends, that
decision will be based on an economic judgement of the costs versus the bene�ts.

Some lemmas seem obviously true but can still be di�cult to prove. Can such proofs be
skipped? The risk involved may depend on why the lemma was created in the �rst place. It was
not uncommon when verifying a particular instruction to reduce the entire proof to the equivalence
of two moderately complex bit vector expressions. Often, this could be stated as a lemma and
proven independently. While some of these appeared obviously true, if there had been an error in
the microcode, it would have been distilled down and buried in that very lemma. This situation
actually arose on the AAMP-FV project when verifying the ABSD instruction, emphasizing that

53

the question of what needs to proven is not merely one of aesthetics, but a practical concern
deserving careful thought as costs are balanced against bene�ts.

What if the microcode is veri�ed through proofs once, but later a change made to the speci�-
cation to facilitate another proof breaks the proof? Does the veri�cation of the microcode break
with the proof?

More subtle is the question of how much abstraction should be introduced into the speci�cation.
In the AAMP5 and AAMP-FV projects, we started with a register-transfer, or microarchitecture,
abstraction of the processor. Even here, choices had to be made regarding how much detail should
be included in the model. Including more detail makes it simpler to validate the model against the
actual design but can have a profound impact on the complexity of the proofs. For example, in the
AAMP5, abstract, property-oriented speci�cations of the bus interface unit (BIU) and look-ahead
fetch unit (LFU) were created. While this saved considerable proof e�ort, the engineers were never
as comfortable with these speci�cations as with the models that more closely followed the detailed
design.

There are many choices to be made, and a complete set of proofs are not in themselves su�cient;
one can have completely correct and consistent models that bear no relationship to reality. Ulti-
mately, one has to honestly balance bene�t against cost, organizing the e�ort so as to concentrate
on the areas of highest risk. Even if every proof is not completed, it is usually possible to achieve
a level of assurance in excess of what is accepted practice today.

On the AAMP-FV, we have chosen to create a model of the processor in PVS at the register-
transfer level, to create a model of the processor at the instruction set level, and show that the
register-transfer level model and the microcode correctly implement the instruction set speci�cation.
The most important proofs have been completed, although a few supporting lemmas have only been
inspected and still need to be completed.

7.8 Support for Team E�orts

While the AAMP-FV team was small (three or four employees at Collins, one at SRI), it was large
enough to encounter problems typically associated with team e�orts. These included maintaining
consistent con�gurations between all individuals, dividing work up among team members, and in-
corporating changes from one individual without adversely a�ecting other members of the team. All
of these were compounded by having two development sites and by the fact that a PVS speci�cation
is a complex system consisting of a theories and proofs related through several dependencies.

The worst problems were simply those of maintaining a consistent con�guration between team
members. This was mitigated among the Collins team members by employing a commercial con-
�guration management system to maintain independent views of the AAMP-FV speci�cations and
proofs, integrate changes from one team member into the views of other team members, and save
baselines. While the con�guration management system was awkward to use and and seemed ex-
cessive for a project of moderate size, con�guration control problems within the Collins site were
minimal.

Unfortunately, this system was not available at SRI, and con�guration control had to be per-
formed manually. Normally, this consisted of sending individual theories and proof �les between
Collins and SRI. Inevitably, the Collins and SRI versions would drift apart as individuals forgot
to send updated theories or proofs or neglected to install newly received changes to avoid conicts
with ongoing proofs. PVS provides a facility to generate a \dump" �le that can be used to recreate

54

a PVS context, and such dumps were exchanged periodically. Unfortunately, no facilities exist for
identifying the di�erences between a dump and an existing PVS context, or for extracting these
di�erences and applying them to an existing context. As a result, team members were reluctant to
switch to another's dump �le for fear it would overlay their most recent changes.

Every few months, the failure to complete a complex proof would be traced, after many hours
of work, to a discrepancy between the SRI and Collins con�guration. Many more hours would then
be devoted to \synchronizing" the speci�cations, which would immediately start to diverge again.

These problems can be addressed in a variety of ways, ranging from strict use of a manual
protocol to implementation of a full, distributed, con�guration management system. The most
reasonable choice would be to use PVS with an existing con�guration management system as was
done on the AAMP-FV project. While this has worked well within Collins, a few minor problems
have been observed. For example, when a �le is checked out or checked in, PVS views it has being
modi�ed, and has to retypecheck all theories dependent on it. Care must be taken to check out and
restore both the PVS theory (.pvs) and proof (.prf) �les. Also, context (.bin) �les pose a problem
since they may be a�ected by a change to their context even though the associated theory or proof
�le has not been changed.

Distributed sites present a more complex problem. The ideal solution would be to use a con�g-
uration management system that supports distributed sites, but these are usually expensive. Since
distributed team e�orts using PVS are still rare, some simple facilities to check-in and check-out
theories from a central site and to identify di�erences between two sites would probably be su�cient
if combined with a manual protocol.

7.9 Use of Human Resources

It became clear on the AAMP-FV project that large formal veri�cation e�orts should be sta�ed
with several levels of expertise. Some activities must be assigned to the most experienced individual,
while others can be safely delegated to less experienced employees. Besides making good economic
sense, this ensures that all team members remain challenged and helps ensure an increasing pool
of skills.

Ideally, the most experienced individuals would be given the task of creating the PVS spec-
i�cations, since there are numerous decisions that will a�ect the overall success of the project.
Choices must be made as to what is to be modeled (i.e., what is the ultimate goal of the project),
where abstraction can be used as opposed to simply copying the system design, and which styles
of speci�cation can be validated through informal reviews and which will best support the proofs.
Some tasks, such as eshing out speci�cation details and conducting reviews, can be delegated to
less experienced individuals, but the overall structure of the formal models must be directed by
individuals with a good understanding of the problem domain and experience with both formal
speci�cation and veri�cation.

Its also important to have experienced individuals involved with setting up the framework for
the proofs and generating the �rst example proofs. While any completed proof is in some sense
adequate, care needs to be taken to ensure that proofs are robust since changes to the speci�cations
will occur even on a stable project. Also, an experienced individual can often come up with a far
shorter and more elegant proof than a novice, and proofs should be e�cient to minimize the cost
of running them and their derivatives.

55

Once this framework is in place, actually completing the proofs can be delegated to the most
inexperienced individuals on the team. One of the advantages of formal veri�cation is that each
proof provides a simple thumbs up or thumbs down, regardless of the quality of the proof. Even so,
it would seem prudent to provide some sort of oversight to ensure that the proofs aren't drifting too
far from the original robust and e�cient examples devised by the more experienced team members.

Our experiences also suggest that at least one individual should be charged with responsibility
for ensuring that di�erent versions of the speci�cations remain synchronized and overseeing the
integration of each team member's work into the overall speci�cation and proofs. As with any
project, it is also recommended that there be a project manager, project plan, and project schedule
and that the project be tracked and managed against that plan.

56

Chapter 8

Conclusions and Future Directions

The central result of this project was to demonstrate that formal veri�cation of microcode can be
performed at reasonable cost for most of the AAMP-FV instruction set. We have formally speci�ed
in PVS the entire AAMP-FV microarchitecture, 54 of the AAMP-FV's 80 instructions, translated
into PVS the microcode for these instructions. The microcode in these 54 instructions was proven
correct except for the proofs of some supporting lemmas.1No errors were found in the microcode
veri�ed, although some mistakes were discovered in our speci�cations. The cost to verify these
instructions was about 38 hours per instruction, almost an order of magnitude reduction over the
AAMP5 costs.

Moreover, we are con�dent that the cost can be reduced further. Even on the AAMP-FV project,
substantial e�ort went into re�ning and generalizing proof strategies. Much of this expertise can be
reused on future e�orts. Our current belief is that we could cut the cost per instruction to about
one half our current costs, i.e., approximately 20 hours per instruction.

However, more work needs to be done on the veri�cation of complex instructions such as multi-
plication, division, and procedure call and return. While techniques for verifying these instructions
were developed on the AAMP-FV project, they have not been applied to all the remaining instruc-
tions. Veri�cation of these instructions should eventually become routine, but they will probably
always be more costly to prove correct than the simpler instructions. Unfortunately, we still do
not have a good estimate of what the cost of verifying these instructions could be reduced to.
More work needs to be done in exploring the variety of instructions to be veri�ed and re�ning the
strategies developed on the AAMP-FV project.

In retrospect, there has been a steady advancement of technology and techniques for formal
veri�cation and its transfer to Collins on both the AAMP5 and AAMP-FV projects. The AAMP5
project demonstrated how formal speci�cations could be applied to a complex, pipelined micro-
processor and laid the groundwork for formal veri�cation of microcode. On the AAMP-FV project,
formal speci�cation and veri�cation of simple instructions were well understood and applied rou-
tinely. Techniques for the more complex instructions were developed and are now being transferred
to Collins.

1In a later phase of the project, SRI completed the proofs of these supporting lemmas, as well as the proofs of
some of the more complex instructions such as CALL and IMPY. These proofs were run top-to-bottom to ensure no
lemma was left unproved in the proof chain. The axioms in the new speci�cation have not been validated by Collins,
but the proofs have been installed and executed by them. SRI also explored in this later phase ways to automate the
proofs and make them more e�cient. This work is documented in [33].

57

There are several other improvements that could be made. The AAMP-FV project has con-
vinced us of the importance of sheer computing power when attempting formal veri�cation on an
industrial scale. The extensive rewriting capabilities and decision procedures of PVS played an
essential role in completing the AAMP-FV proofs|without them the project would not have been
feasible. Even so, considerable time is spent waiting on the prover, and still more speed would
be helpful. On the AAMP-FV project, an enhancement to PVS that improved its performance
by a factor of four made possible approaches that were previously infeasible simply because they
took too long. Future improvements in workstation speed and enhancements to PVS will drop the
man-hours per instruction further yet.

Another important area for improvement is in bit vector libraries. In hardware veri�cation, the
manipulation of bit vectors accounts for most of the veri�cation e�ort. The bit vector libraries
developed for the AAMP5 are extensive, but there are still questions of whether they are the
best form needed to support both speci�cation and proofs. The rewrite lemmas developed for the
AAMP-FV project have moved us away from dependence on a speci�c bit vector representation,
although proving their correctness using at least one model serves to demonstrate their consistency.
Ideally, decision procedures for the bit vectors will be added directly to PVS to supplement those
currently available for arithmetic equality and BDD-based Boolean simpli�cation. Even so, rewrite
rules for the bit vectors will still be needed to supplement the core functionality provided by the
decision procedure.

The AAMP-FV project also made it clear that it is not su�cient simply to complete a proof
once. Even though the design of the AAMP-FV was not changed during the project, the PVS
speci�cations were changed frequently to correct errors and to simplify later proofs. All too often,
these changes \broke" proofs that had already been \completed", that then had to be corrected
at considerable expense. Techniques for making proofs more robust would have reduced both the
cost and annoyance of making such changes. On most industrial projects, the requirements and
design will be far less stable than for the AAMP-FV and the need for robust proofs considerably
greater. This can be achieved both by engineering proofs to be more robust and by increasing
the capabilities of PVS. One possibility is the development of more powerful prover commands to
reduce the need for user involvement at low levels of detail. Improved user interfaces would also
make it easier to see patterns and to alter proofs to make them more robust.

Another important way to reduce the cost of formal veri�cation is to reuse speci�cations and
proofs. Examples need to be done to explore how families of products can be speci�ed. How can
common features be speci�ed and veri�ed, and how can these be reused and extended to specify a
single instance of the family?

A related question involves the reuse of proof strategies. Many of the micro correctness and
macro lift proofs associated with the AAMP-FV are all quite similar. This is a common situation
in industrial projects, where products are often built from variations on a few standard design
patterns. Our reuse strategy was a simple one; we copied the proof of a similar instruction, edited
it, ran it, then \tweaked" the proof until it completed. More sophisticated approaches would allow
reuse of one copy of the core strategy, with the \tweaks" added as specializations of this strategy.

As formal veri�cation evolves from small e�orts sta�ed almost entirely by formal methods
experts to industrial e�orts sta�ed by domain experts, thought will need to be given to how the
tools and management of formal veri�cation will have to change. Con�guration management of
a complete PVS veri�cation, including speci�cations, proofs, proof strategies, and context, can
become complex even for a project the size of the AAMP5 and AAMP-FV. As teams grow, more

58

attention will have to be paid to how work is divided among individuals with di�erent levels of
expertise. What facilities will be needed to lower the entry level for novices? If environments for
group veri�cation are to be developed, what features should these environments have?

Formal veri�cation is moving towards realistic use in industrial settings. There has been steady
advancement and transfer of this technology to Collins. In fact, su�cient expertise has been
developed that it is being used not only in the ways anticipated, but in unforeseen ways by real
engineers on real projects. Further inroads will occur as tools, performance, and the pool of
examples improve.

Acknowledgements|The authors thank Rick Butler and Paul Miner of NASA Langley for their support of

the AAMP-FV and AAMP5 projects, Sam Owre and Natarjan Shankar of SRI International for the development and

maintenance of PVS, and Al Mass of Rockwell International for translation of the microcode to PVS and consultation.

We also thank John Rushby of SRI and John Gee, Mark Kovalan, Charlie Kress, Steve Maher, Mike Masters, Nick

Mykris, Je� Russell, and Roger Shultz of Rockwell for their support and assistance.

59

Bibliography

[1] Geo� Barrett. Formal methods applied to a oating-point number system. IEEE Transactions

on Software Engineering, 15(5):611{621, May 1989.

[2] Derek L. Beatty and Randal E. Bryant. Formally verifying a microprocessor using a simula-
tion methodology. In Proceedings of the 31st Design Automation Conference, pages 596{602.
Association for Computing Machinery, June 1994.

[3] David W. Best, Charles E. Kress, Nick M. Mykris, Je�rey D. Russell, and William J. Smith.
An advanced-architecture CMOS/SOS microprocessor. IEEE Micro, 2(4):11{26, August 1982.

[4] William R. Bevier. Kit: A study in operating system veri�cation. IEEE Transactions on Soft-

ware Engineering, 15(11):1368{81, November 1989. Also published as CLI Technical Report
28.

[5] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY, 1979.

[6] Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine code programs for a
commercial microprocessor. In D. Kapur, editor, Automated Deduction { CADE-11, number
607 in Lecture Notes in Computer Science, pages 416{430. Springer-Verlag, 1992.

[7] J. R. Burch and D. L. Dill. Automatic veri�cation of pipelined microprocessor control. In
David Dill, editor, Computer-Aided Veri�cation, CAV '94, volume 818 of Lecture Notes in

Computer Science, pages 68{80, Stanford, CA, June 1994. Springer-Verlag.

[8] R. Butler and G. Finelli. The infeasibility of experimental quanti�cation of life-critical software
reliability. IEEE Transactions on Software Engineering, 16(5):66{76, January 1993.

[9] Ricky W. Butler. NASA Langley's research program in formal methods. In COMPASS

'91 (Proceedings of the Sixth Annual Conference on Computer Assurance), pages 157{162,
Gaithersburg, MD, June 1991. IEEE Washington Section.

[10] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and Steven P. Miller. A
bitvectors library for PVS. Technical Memorandum 110274, NASA, Langley Research Center,
Hampton, VA, August 1996.

[11] W. C. Carter, W. H. Joyner, Jr., and D. Brand. Microprogram veri�cation considered neces-
sary. In National Computer Conference, volume 48, pages 657{664. AFIPS Conference Pro-
ceedings, 1978.

60

[12] J. V. Cook. Final report for the C/30 microcode veri�cation project. Technical Report
ATR-86(6771)-3, Computer Science Laboratory, The Aerospace Corporation, El Segundo, CA,
September 1986.

[13] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem proving for hardware
veri�cation. In Kumar and Kropf [24], pages 287{305.

[14] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. Formal design and veri�cation of
a reliable computing platform for real-time control. NASA Technical Memorandum 102716,
NASA Langley Research Center, Hampton, VA, October 1990.

[15] David W. Embley and Scott N. Wood�led. Assessing the quality of abstract data types
written in Ada. In Tenth International Conference on Software Engineering, pages 144{153.
IEEE Computer Society Press, April 1988.

[16] Colin Fidge, Peter Kearney, and Mark Utting. Formal speci�cation and interactive proof of
a simple real-time scheduler. Technical Report 94-11, Software Veri�cation Research Centre,
The University of Queensland, April 1994.

[17] S. Gerhart, M. Bouler, K. Greene, D. Jamsek, T. Ralston, and D. Russino�. Formal methods
transition study �nal report. Technical Report STP-FT-322-91, Microelectronics and Com-
puter Technology Corporation, Austin, Texas, August 1991.

[18] M. Gordon. Why higher-order logic is a good formalism for specifying and verifying hardware.
Technical Report 77, University of Cambridge Computer Laboratory, September 1985.

[19] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic. Cambridge University Press, Cambridge, UK, 1993.

[20] Warren A. Hunt, Jr. FM8501: A Veri�ed Microprocessor, volume 795 of Lecture Notes in
Arti�cial Intelligence. Springer-Verlag, Berlin, 1994.

[21] Warren A. Hunt, Jr. and Bishop C. Brock. A formal HDL and its use in the FM9001 veri�ca-
tion. In C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and Hardware

Design, pages 35{47, Hemel Hempstead, UK, 1992. Prentice Hall International Series in Com-
puter Science.

[22] Je�rey Joyce. Veri�cation and implementation of a microprocessor. In G. Birtwistle and
P. A. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation and Synthesis. Kluwer Aca-
demic Publishers, Boston, MA, 1988.

[23] Peter Kearney and Mark Utting. A layered real-time speci�cation of a RISC processor. In
Costas Courcoubetis, editor, Computer-aided Veri�cation { CAV '93, volume 697 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[24] Ramayya Kumar and Thomas Kropf, editors. Preliminary Proceedings of the Second Confer-

ence on Theorem Provers in Circuit Design, Bad Herrenalb (Blackforest), Germany, September
1994. Forschungszentrum Informatik an der Universit�at Karlsruhe, FZI Publication 4/94.

61

[25] George B. Leeman, William C. Carter, and Alexander Birman. Some techniques for micro-
program validation. In Information Processing 74 (Proc. IFIP Congress 1974), pages 76{80.
North-Holland Publishing Co, 1974.

[26] B. Littlewood and L. Strigini. Validation of ultra-high dependability of software-based systems.
CACM, November 1993.

[27] Steven P. Miller and Mandayam Srivas. Formal veri�cation of the AAMP5 microprocessor:
A case study in the industrial use of formal methods. In WIFT'95: Workshop on Industrial-

Strength Formal speci�cation Techniques, Boca Raton, FL, 1995. IEEE Computer Society.

[28] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Arti�cial Intelligence, pages 748{752, Saratoga, NY, June 1992. Springer-
Verlag.

[29] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal veri�cation
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on

Software Engineering, 21(2):107{125, February 1995.

[30] James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horning. Using transfor-
mations and veri�cation in circuit design. Formal Methods in System Design, 4(1):181{210,
1994.

[31] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Manual (Beta

Release). Computer Science Laboratory, SRI International, Menlo Park, CA, February 1993.

[32] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software, 7(11):15{24,
November 1990.

[33] Mandayam Srivas. Automating microcode veri�cation via symbolic simulation: The AAMP-
FV experiment. Contractor report, NASA Langley Research Center, Hampton, VA. (Forth-
coming).

[34] Mandayam Srivas and Mark Bickford. Formal veri�cation of a pipelined microprocessor. IEEE
Software, 7(5):52{64, September 1990.

[35] Mandayam Srivas and Steven P. Miller. Applying formal veri�cation to a commercial micro-
processor. In IFIP Conference on Hardware Description Languages and Their Applications

(CHDL'95), Makuhari, Chiba, Japan, August 1995.

[36] Mandayam Srivas and Steven P. Miller. Formal veri�cation of an avionics microprocessor.
Technical Report NASA Contractor Report 4682, NASA Langley Research Center, Hampton,
Virginia, July 1995.

[37] Mandayam Srivas and Steven P. Miller. Formal veri�cation of the AAMP5 microprocessor.
In Jonathan P. Bowen and Michael G. Hinchey, editors, Applications of Formal Methods.
Prentice-Hall International Ltd., Hemel Hempstead, UK, 1995.

62

[38] Mandayam K. Srivas and Steven P. Miller. Applying formal veri�cation to the AAMP5 micro-
processor: A case study in the industrial use of formal methods. Formal Methods in Systems

Design, 8(2):153{188, March 1996.

[39] Matthew Wilding. A mechanically veri�ed application for a mechanically veri�ed environment.
In Costas Courcoubetis, editor, Computer-aided Veri�cation { CAV '93, volume 697 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[40] Matthew Wilding. Machine-Checked Real-Time System Veri�cation. PhD thesis, University
of Texas at Austin, 1996.

[41] Phillip J. Windley. The Formal Veri�cation of Generic Interpreters. PhD thesis, University
of California, Davis, CA, June 1990.

[42] Phillip J. Windley and Michael L. Coe. A correctness model for pipelined microprocessors. In
Kumar and Kropf [24], pages 35{54.

63

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Prescribed by ANSI Std. Z39-18
298-102

Standard Form 298 (Rev. 2-89)

REPORT DOCUMENTATION

February 1999 Contractor Report

Formal Verification of the AAMP-FV Microcode C NAS1-19704, NAS1-20334

WU 519-30-31-01

Steven P. Miller, David A. Greve, Matthew M. Wilding,
Mandayam Srivas

Rockwell Collins, Inc.; Cedar Rapids, IA

SRI International; Menlo Park, CA

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

NASA/CR-1999-208992

Miller, Greve, Wilding: Rockwell Collins, Cedar Rapids, IA; Srivas: SRI International, Menlo Park, CA.
Langley Technical Monitor: Paul S. Miner Final Report

Unclassified-Unlimited
Subject Category 61 Distribution: Standard
Availability: NASA CASI, (301) 621-0390

This report describes the experiences of Collins Avionics & Communications and SRI International in formally specifying
and verifying the microcode in a Rockwell proprietary microprocessor, the AAMP-FV, using the PVS verification system.
This project built extensively on earlier experiences using PVS to verify the microcode in the AAMP5, a complex,
pipelined microprocessor designed for use in avionics displays and global positioning systems. While the AAMP5
experiment demonstrated the technical feasibility of formal verification of microcode, the steep learning curve encountered
left unanswered the question of whether it could be performed at reasonable cost. The AAMP-FV project was
conducted to determine whether the experience gained on the AAMP5 project could be used to make formal verification of
microcode cost effective for safety-critical and high volume devices.

Formal Methods, Microcode Verification, Theorem Proving 72

A04

Unclassified Unclassified Unclassified

